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License (BSD License)

Copyright (c) 2009,  Petr Máj
All rights reserved.

Redistribution  and  use  in  source  and  binary  forms,  with  or  without 
modification,  are  permitted  provided  that  the  following  conditions  are 
met:
• Redistributions of source code must retain the above copyright notice, 

this list of conditions and the following disclaimer.
• Redistributions in binary form must reproduce the above copyright 

notice, this list of conditions and the following disclaimer in the 
documentation and/or other materials provided with the distribution.

• Neither the name of the Crosscheck nor the names of its contributors 
may be used to endorse or promote products derived from this 
software without specific prior written permission.

THIS  SOFTWARE  IS  PROVIDED  BY  PETR  MAJ  ''AS  IS''  AND  ANY 
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 
PETR  MAJ  BE  LIABLE  FOR  ANY  DIRECT,  INDIRECT,  INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 
SERVICES;  LOSS  OF  USE,  DATA,  OR  PROFITS;  OR  BUSINESS 
INTERRUPTION)  HOWEVER  CAUSED  AND  ON  ANY  THEORY  OF 
LIABILITY,  WHETHER  IN  CONTRACT,  STRICT  LIABILITY,  OR  TORT 
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 
OF  THE  USE  OF  THIS  SOFTWARE,  EVEN  IF  ADVISED  OF  THE 
POSSIBILITY OF SUCH DAMAGE.
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Abstract

This  thesis  presents  Crosscheck,  in  many ways  a  novel 
approach  to  the  source  code  originality  problem.  Apart 
from  already  available  tools  Crosscheck  utilizes  the 
abstract  interpretation  and  static  analysis  to  combat 
plagiarized  code.  It  successfully  demonstrates  both  the 
benefits  and  drawbacks  of  this  technology  and  gives  a 
direction to future research into this area.

Abstrakt

Tato  diplomová  práce  popisuje  Crosscheck,  který  je  v 
mnoha směrech zcela novým přístupem k řešení problému 
ověření  originality  kódu.  Narozdíl  od  momentálně 
dostupných  systémů,  Crosscheck  používá  abstraktní 
interpretaci  a  statickou  analýzu  k  úspěšnému  odhalení 
padělaného  zdrojového  kódu,  úspěšně  demonstruje  jak 
výhody  tak  nevýhody  této  technologie  a  otevírá  možné 
cesty pro další výzkum v této oblasti.

Keywords

Plagiarism detection, abstract interpretation, static 
analysis
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1 Introduction1 Introduction

The  topic  of  this  thesis  was  to  create  a  tool  capable  of  detecting 
plagiarized source code fragments especially in the academic domain. To 
fulfill this goal I have created Crosscheck, the system that is described in 
greater detail in the following chapters.

1.1 Document Organization
This thesis contains the complete reference to the Crosscheck, notably 
the explanation of  its  main design principles.  In  the first  chapter,  the 
structure  of  the  document  is  presented  together  with  the  used 
typographic conventions which is then followed by a brief motivation into 
this research area.

Second chapter gives a background research on the currently available 
tools for the same purpose with their techniques explained as well as an 
overview of tools sharing remarkable similarities with either the area of 
plagiarism detection or another Crosscheck's properties.

Third chapter deals with the explanation of  the basic  idea behind the 
Crosscheck  functionality.  Key  aspects  of  the  Crosscheck  detecting 
algorithm  are  then  described  in  greater  detail  in  the  subsequent 
chapters. 

Chapters four to seven describe the key principles of the Crosscheck's 
detection process in their natural order.

Chapter  eight  evaluates  Crosscheck's  results  and  discusses  the 
completion  of  its  goals.  The  last  chapter  concludes  the  thesis  and 
summarizes the work done,  and also gives a reasoning about possible 
future improvements of Crosscheck.

This  document  also  contains  several  appendices,  notably  Appendix  A 
describing the contents of the attached CD and Appendix B with brief 
user tutorial of the whole system.

1.1.1 Typographic conventions
The following conventions are used to simplify reading of the text:
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• normal text is typed with a book font

• new items are highlighted in italics when they are firstly introduced

• alteration rules and examples are printed on gray background with 
black border:

This is an example how examples are typed.

• identifiers,  keywords and other  language elements are typed in 
monospace font

• source code of  any non Crosscheck language is  printed with line 
numbers:

1 def exampleCode(): 

2   print "I am a code example" 

3 

4 exampleCode()  

1.2 Motivation of the Project
In over forty years since the first statistics about cheating of university 
students have appeared, the plagiarism in coursework submissions has 
grown to one of the biggest educational issues of today's universities. 

It  is  obvious  that  this  problem  is  not  restricted  to  the  academe  but 
presents also a great danger to the whole society,  because if  students 
cheat  their  work  in  schools  they  are  likely  to  become  incompetent 
graduates who may fail  in their jobs causing damage not only to their 
employer  but  also  to  the  potential  customer  (when  the  failure  is  not 
revealed)  and  even  to  the  reputation  of  their  university.  Moreover 
cheating also harms the student as he/she is loosing a chance to learn 
properly  thus  being  unprepared  and  uncompetitive  for  future 
employment.  It  also  harms  other  students  as  it  constitutes  unfair 
environment [Dick02].

In the recent years the rise of Internet and digital information sharing 
makes it even easier for students to plagiarize. Previously seen as only 
lack of original thought, cheating can now be done using the “copy-paste” 
methods  and  thus  also  significantly  decreasing the  time  spent  on  the 
particular assignment. Internet searching engines can simplify this task 
even more by locating the appropriate resources by only a few keywords 
in virtually no time. There are even specialized web pages - the so called 
essay mills -  offering complete essays and homeworks on common topics 
for download. Naturally with cheating this easy it is not surprising that 
recent studies, such as [Sheard02] revealed an overwhelming majority of 
students (96%) used cheating at least once during their academic career.

Although the answer to the question why students cheat at the first place 
should not be covered by this thesis (further information can be found in 
[Dick02]  and others),  it  is  worth mentioning at  least the basic factors 
influencing  student's  decision  whether  to  cheat  or  not.  These  are 
[Dick02]:  
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• technology

• societal context

• demographic factors

• situational context

• and the personal domain.

Although the prevention, detection and response to cheating in the Czech 
Republic (and other eastern Europe countries [Grimes04])  is  generally 
milder  than  in  their  western  counterparts,  especially  in  the  English 
speaking  world,  the  seriousness  of  such  academic  dishonesty  is  well 
appreciated and appropriate policies are being developed. Such violation 
at the Czech Technical University usually means a loss of the particular 
course1.

Cheating  is  also  not  unique  to  the  computer  science  domain  or  even 
engineering in general and sophisticated systems have been developed to 
deal with the plagiarism of written essays (usually in English), such as the 
turnitin.com which is described in one of the following chapters.

1.2.1 Introduction to Source Code Plagiarism
Where the main (and the only interesting) tool for essay plagiarism is the 
paraphrasing  without  proper  citations,  the  situation  in  the  field  of 
programming languages cheating techniques is much more systematized, 
mostly due to better formal structure of computer languages.

Various  source  code  plagiarism  techniques  have  been  described  and 
categorized by [Faidhi87] to the six levels described in table 1.

Level Code Alteration Method

0 Original source code

1 Comments and whitespace characters changed

2 Identifier and function names changed

3 Variable positions changed

4 Combinations of functions changed

5 Program statements changed

6 Control logic changed

Table 1: Levels of program modifications

The higher  the level  the  more complex  the  modifications  are  and the 
more time consuming the plagiarism is. Generally speaking the detection 
of cheated sources where modifications of level four or higher were used 
is  extremely  hard.  On the other  hand such alteration usually  requires 
good  understanding  of  the  problem  and  may  be  even  more  time 

1 According to the rules a subject may be attempted only twice. If the second attempt is 
unsuccessful, student is automatically expelled.
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consuming than writing the coursework from the scratch. Therefore it is 
questionable  whether  such  actions  still  qualify  as  cheating  and  these 
must  be  dealt  with  accordingly  to  the  properties  of  the  particular 
assignment.

The above presented table can be updated to reflect also multi-paradigm 
programming  languages  and  even  cheating  across  programming 
languages. The difficulty with these levels is that they do not fit into the 
hierarchy  because  they  heavily  depend  on  the  coursework  topic, 
paradigms used and selected languages. While it may be extremely easy 
to detect plagiarized C program submitted as C++ application, the same 
decision with languages such as C++ and Prolog is unsolvable for most 
cases2. 

Another  important  factor  of  source  code  plagiarism  detection  is  the 
nature of  assignments being checked.  Especially in the undergraduate 
courses, where the majority of cheating is done, due to larger amounts of 
enrolled students  assignments are usually the same for the whole class, 
as  it  is  unfeasible  to  prepare  unique  assignment  for  each  student. 
Additionally  if  the  whole  class  receives  the  same  assignment,  the 
submissions could then be compared against each other (for instance in 
terms of performance) to produce fair and accurate marking. 

Although the set of such assignments is vast, most of them are targeted 
to at least one of the following purposes:

• to  demonstrate  the  knowledge  of  a  particular  programming 
language.  These  assignments  usually  take  form  of  a  simple 
algorithmic problem that student usually knows how to solve, the 
real task is to write the solution in a given programming language

• to  demonstrate  the  knowledge  of  a  particular  algorithm domain, 
which  usually  means  a  task  which  requires  students  to  slightly 
modify (and/or merge) some of already known algorithms in order to 
fit them for a particular (usually not trivial) problem.

• performance based assignments.  Here students have to understand 
in great detail some problem and then come up with a solution that 
is optimal in previously selected characteristics3.

• optimization based assignments. Although these are very similar to 
the  performance  based  tests  mentioned  above,  the  biggest 
difference  is  that  these  usually  do  not  require  program 
modifications.  Rather  than  that  simple  local  tuning  of  program's 
features should be enough to accomplish the goal. For instance in 
evolutionary  computing  depending on  the  operators'  probabilities 
very  different  results  can  be  obtained.  And  finding  the  right 
probabilities is one example of an optimization based coursework.

From the plagiarism detection's perspective all of the above mentioned 
assignment  types  share  some  trivial  similarities,  but  they  are  very 
different  with  respect  to  their  susceptibility  to  higher  level  code 
alterations,  an  issue  that  will  be  described  in  greater  detail  in  latter 
chapters.

2 Putting apart the feasibility and efficiency of such task.
3 For example performance oriented task is to create an assembler program for matrix 

multiplication optimized for processor cycles required to its completion. This task is 
given each year to the students of X36APS class at the FEE CTU.
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2 Background2 Background  
ResearchResearch

With plagiarism being such an important problem it is not surprising that 
Crosscheck is definitely not the first and neither the last tool to detect 
cheated submissions. The major already existing similar tools are briefly 
reviewed  in  this  chapter  with  respect  to  their  relevance  for  the 
Crosscheck's intended purpose.

As the topic of source code originality shares some similarities with other 
fields,  notably  the  natural  languages'  plagiarism  detection  and  code 
cloning detection, these are also briefly introduced.

For each reviewed tool an example plagiary is also given to illustrate how 
different  plagiarism  detection  tools  respond  to  various  cheating 
techniques as well as to introduce these basic code alteration methods.

2.1 Source Code Plagiarism Detection Tools
Programs  capable  of  detecting  plagiarized  submissions  were  firstly 
introduced  in  the  early  80th and  during  the  past  20  years  they  have 
evolved enough to be divided into three distinctive generations:

Generation Description

1 Statistical  characteristics  (also  called  attribute 
counting systems) of a source code, such as number of 
words,  number  of  lines  of  code  (LOC),  parenthesis 
count, number of variables, etc.

2 Source code is transformed into a simpler form where 
various  irrelevant  features  of  the  program are  lost, 
such as whitespace characters, variable and function 
names,  etc.  The resulting sources are then matched 
against each other.
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Generation Description

3 Exploits the semantics of a program at least to some 
degree.  This  includes  checking  code  blocks  in  the 
order  they  are  executed  in  a  program,  changing 
function calls, etc.

Table 2: Generations of source code plagiarism detectors

It is obvious that the greater the level of a particular tool the wider is the 
range  of  revealed  plagiarized  submissions.  However,  a  threat  of  over 
evolved plagiarism detector is very real as all submitted programs are 
very likely to behave in the same way, i.e. to be semantically equivalent. 
And with smaller and more precisely defined assignments it is even more 
probable that two not plagiarized (i.e. clean) programs would be marked 
as plagiarized because they are semantically equivalent4.

2.1.1 First Generation Tools
As  already  briefly  mentioned,  attribute  counting  systems  (also  called 
feature  comparison  systems)  compute  several  characteristics  of  the 
program  source  code  into  a  feature  vector  which  is  then  compared 
against  other  vectors  using  usually  standard  Eucleidian  metrics  to 
determine the distance of the submissions.

According to [Jonas01] these characteristics can be described using the 
following profiles:

• the physical profile, which consists of properties of the source text 
that are not related to any specific language. These often include 
LOC,  characters  per  line,  average  length  of  words,  character 
statistics, etc. 

• the  Halstead  profile  grouping  traits  related  to  individual 
(programming) languages. This can vary from simple metrics as the 
average token length, token statistics and tokens per line to more 
complicated statistical analysis of token sequences

• and the composite profile being the combination of both

The  following  simple  example  illustrates  both  the  advantages  and 
weaknesses of the feature comparison system plagiarism detection. Both 
source codes are used to compute the Fibbonaci numbers,  the left one 
being original, and the right one deliberate plagiate. These submissions 
are then compared using vector consisting of the following features:

• number of identifiers, keywords, and literals used

• average number of tokens per line

• average length of token

• average number of operators per line

4 This observation is very important as this is one of the key motivations for 
Crosscheck's ability to tune its precision for different assignments.
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Although  the  most  advanced  systems  from  this  category  consisted  of 
more  than  20  different  characteristics  (e.g.  system  presented  in 
[Faidhi87]),  the  above  presented  list  represents  a  reasonable  set  of 
features to demonstrate the possibilities of the method. 

1 int multiplication(int x,int y) {
2   int result=0;
3   while (x>0) {
4     result=result+y;
5     x=x-1;
6   }
7   return result;
8 }    

1 int mult(int p1,int p2) {
2   int r=0;
3   while (p1>0) {
4     r=r+p2;
5     p1=p1-1;
6   }
7   return r;
8 }  

Text 1: Attribute Counting Example using identifier renaming

It  is  obvious from the source  codes that  only the most  basic  method, 
i.e.the  identifier  renaming  was  used.  The  feature  vectors  and  their 
distance are presented in the following table:

Feature Original Copy Second

# of identifiers 11 11 11

# of keywords 6 6 6

# of literals 3 3 3

# of tokens per line (average) 4.88 4.88 9.75

average length of a token 2.18 1.61 1.61

Average number of operators per line 2.38 2.38 4.75

Distance 0.57 / 5.468

Table 3: Distance of identifier renaming example

The final distance is very small as the only one different feature is the 
average length of a token.  Moreover the other features are remarkably 
simmilar  which  leads  without  any  doubt  to  the  conclusion  that  the 
submissions are plagiarised.

However  making  the  modifications  to  the  code  only  slightly  more 
complicated by grouping multiple instructions on the same line, we can 
easily obtain drastically different vector distance (as shown in the fourth 
column in the above table):

1 int mult(int x,int y) {
3   int r=0; while (x>0) { r=r+y; x=x-1 } return r;
4 }

Text 2: Multiplication with line boundaries changed

With this still  extremely simple change the overall  distance has grown 
roughly 10 times and the submissions might not be recognized as copies 
now.  It  is  not  hard to imagine other,  even more obfuscating,  yet  very 
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simple modifications that would change also the remaining features (most 
obvious being the insertion of a dummy code).

The biggest weakness of the first generation tools was the fact that they 
utilized only the minimal knowledge (if  any) about the input language 
which  causes  them  to  be  successful  only  in  cases  where  the  two 
submissions  were  nearly  identical.  Even  with  the  usage  of  advanced 
Halstead  profile,  algorithms  belonging  to  the  first  generation  can  be 
fooled even by code alteration techniques from levels 1 & 2. 

On the other hand, due to the fact that these tools view the input source 
only as a set of characters to be statistically examined, they can be used 
(to some extent) even to address the human language plagiarism as has 
been done with the first version of YAP [Wise92].

2.1.2 Second Generation Tools
The answer to the weaknesses of the first generation is to increase the 
awareness of the input language syntax so that its key elements can be 
emphasized while others (such as comments) can be discarded for the 
purposes  of  the  evaluation.  Comments  and  whitespace  stripping, 
identifier  renaming and unifying and various forms of  hashing are  all 
common features of these algorithms. 

For the final comparison various string tiling algorithms such as Running 
Karp-Rabin, or Greedy String Tiling [Wise93] are generally used. Due to 
increased  time needed  for  these  algorithms to  compare  each pairs  of 
submissions, several new methods of multi phase comparison have been 
suggested.

Jplag

Jplag is arguably the most advanced and widespread tool nowadays in 
active use [Prechelt00]. It utilizes the greedy string tiling algorithm and 
shares  basic  principles  with  another  well  known  program,  the  third 
generation of already mentioned tool YAP [Wise96].

Jplag first tokenizes the input sources in a special way where same tokens 
are assigned different meaning based on their position in the text, e.g. 
block open at the beginning of a function has a different token than block 
open after  a  for  cycle for  instance.  As with almost  all  tools  from this 
generation, comments and whitespace are omitted completely. Identifiers 
are  all  converted into  a  single identifier  token and common language 
elements, such as imported standard library modules, etc. are discarded 
too.

After  the tokenization, the resulting token streams are then compared 
using the greedy string tiling algorithm whose results produce the final 
result. An example of this process is shown in the following paragraphs, 
where the same simple model program as in the previous chapter has 
been used. The plagiarized code is the last code from previous chapter 
updated to include dummy code portions that would clearly fool any first 
generation tool:
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1 int multiplication(int x,int y) {
2   int result=0;
3   while (x>0) {
4     result=result+y;
5     x=x-1;
6   }
7   return result;
8 }    

1 int mult(int x,int y) {
3   int r=0; while (x>0) { r=r+y;
    x=x-1 } return r;
4   r=r*3+r-2; return r-1       
5 }

Text 3: Multiplication code altered using renaming and dummy code insertion

The  source  codes  are  now  tokenized  into  token  streams  which  are 
described in the text below. For identifier, the capital I is used, keywords 
are transformed to their first  bold letters,  literals are replaced by the 
capital L and opening and closing blocks are prefixed with their context, 
e.g. Function being is F{, while begin is W{. Parentheses, semicolons and 
other non-essential tokens are omitted too:

iIiIiIF{iI=LwI>LW{I=I+II=I–LW}rIF} iIiIiIF{iI=LwI>LW{I=I+II=I–
LW}rII=I*L+I–LrI–LF}

Text 4: Token sequences according to JPlag

Although it may not be obvious to the naked eye, these sequences are 
remarkably similar, with the only exception being the code included in the 
plagiary  as  shown in  the figure  below (the  matching parts  have been 
highlighted in gray):

Input1:  iIiIiIF{iI=LwI>LW{I=I+II=I–LW}rI             F}
Input2:  iIiIiIF{iI=LwI>LW{I=I+II=I–LW}rII=I*L+I–LrI–LF}

Illustration 1: Alignment of the multiplication source and plagiary(1)

This  example  can  be  further  expanded  with  additional  functions, 
statement  rearrangement  (if  possible  due  to  data  dependencies),  etc. 
Unfortunately  one  of  the  crucial  weaknesses  of  this  approach  is  its 
inability to properly detect the dummy code. As seen even in the short 
example above, the inserted dummy code (although being placed after 
the  return  statement  and  therefore  completely  unnecessary5)  causes 
large misalignments,  or  may even fool  the greedy tiling algorithm (no 
polynomial  time  algorithm is  known  for  this  task  [Wise93])  into  false 
smaller matches. 

Tiling of tokenized strings is also susceptible to changes in the control 
structure. Consider for instance a situation in which the while loop in the 
multiplication example is replaced with a for loop. This is clearly a trivial 
operation (simple loops, i.e. loops with no internal or external changes to 
the control  variable are  easily  interchangeable even at  the automated 
level [Schwartzbach03]) and thus is ideal for plagiarism purposes. 

Another  problematic  issue  are  the  expressions  themselves  –  a  simple 
rearrangement obeying operator precedences and other important rules 
may break the tiling under a reasonable threshold. This idea is based on 
the  fact  that  while  best  tiling  can  be  always  achieved  using  only 

5 Which in this case can be easily detected by various means of the static analysis.
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substrings of length equal to 1, this trivial result does not tell us much 
about the real problem. Therefore a tiling threshold (usually from 2 to 10) 
is applied to guide the algorithm to less trivial and more telling results 
[Prechelt00].

While these techniques generally belong to the upper levels of plagiarism 
levels  (with  the  notable  exception  of  dummy  code  insertion)  and 
oversensitivity to these issues may be harmful6, at least minimal tolerance 
to these alterations is more than desirable. The following example of the 
already known multiplication example shows the drastic effects of these 
alterations on the 2nd generation algorithms: 

1 int multiplication(int x,int y) {
2   int result=0;
3   while (x>0) {
4     result=result+y;
5     x=x-1;
6   }
7   return result;
8 }    

1 int mult(int x, int y) {
2   int result=0
3   for (int i=0;i<x;i++) {
4     result=result+y
5   }
6   result=result+5;
7   return result-5;
8 }

Text 5: Multiplication - changes to control structure

Although the above created modifications can indeed be done without 
understanding the true purpose of the original source code (this is hard 
to  illustrate  on such a  trivial  example though),  the two programs will 
result  in  a  very  different  token sequences and with  a  tiling threshold 
reasonably low (considering the small length of the examples) at at least 
three tokens, the overall comparison is rather miserable:

Input1:  iIiIiIF{iI=LwI>LW{       I=I+I  I=I–LW}rI             F}
Input2:  iIiIiIF{iI=LfiI=LI<II++F{I=I+IF}I=I+L  rI-L           F}

Illustration 2: String tiling of example with advanced alterations

This drop from 100% cover of source code to only 63% in such a small 
code  would  pass  the  plagiarism  detection  and  clearly  shows  the 
limitations of this approach.

Xplag

While the tools from second generation generally understand the syntax 
(and  sometimes  to  some  extent  event  the  semantics)  of  the  input 
language(s), it is increasingly harder to add support for new languages. 
Easy, yet extremely efficient way to solve this limitation is represented by 
Xplag  [Arwin06]  which  uses  the  intermediate  language7 of  a  compiler 
suite (in this case the GNU compiler suite) on which it then performs the 
plagiarism detection. Not only does this mean that single application can 

6 As already mentioned in previous chapters, large changes of the program statements 
and control logic usually require more time than the coursework itself and are thus 
inefficient for possible plagiarists.

7 In this meaning the language in which is represented the inner form after the 
compiler frontend is finished, which may not even be a language in a human readable 
sense.
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detect  plagiarism in a wide range of  programming languages (C,C++, 
Java, Fortran, etc.) but also allows the tool to detect plagiarism across 
these programming languages as they all share a common intermediate 
language. 

Additionally the translation and various optimizations being done by the 
compiler suite's frontend may be beneficial to the plagiarism detection 
process as some of the problems mentioned above (really dummy code, 
smaller  control  structure  alterations)  may  be  unified   during  the 
translation. On the other way the big disadvantage in this approach is 
that this unification cannot be controlled and is usually not designed to 
meet plagiarism detection purposes. While some complex optimizations 
may bring two original codes together, other changes (for instance from 
procedural  to  object  oriented  code)  that  are  easily  done  by  humans 
without  changing  the  semantics  will  render  the  two  intermediate 
representations  orders  of  magnitude  different.  Nevertheless  this 
approach  is  one  of  the  most  intriguing  developments  in  plagiarism 
detection in the past decade and can be greatly extended using emerging 
compiler technologies such as LLVM [Lattner00,Lattner04]. 

MOSS

MOSS, a.k.a. Measure of Software Similarity is another tool created to 
fight  plagiarism  in  computer  classes  submissions  at  the  University  of 
Berkeley, California. The initial part of the algorithm is fairly similar to 
the  Jplag  as  the  input  sources  are  tokenized  and  stripper  off  the 
unnecessary elements. The biggest difference between MOSS and other 
tools is that apart from pairwise juxtaposition, MOSS creates a k-grams 
(overlapping sequences of consecutive tokens) which are then hashed to 
allow a search engine to do the job of finding similar tasks. This allows 
MOSS to test  much larger pools that  previously described algorithms. 
They  key  algorithm  is  the  winnowing  algorithm  for  fingerprinting 
documents which is described in [Schleimer03].

Other tools

Other  tools  dealing  with  the  code  plagiarism  problems  together  with 
more technical  details  about  already mentioned tools  can be  found in 
[Maj08].

2.2 Code Cloning Detection
Due  to  its  important  commercial  implications,  code  cloning  detection 
systems has been around much longer than plagiarism detection tools 
and since they share some striking similarities their algorithms can be 
(and were) easily adapted for the plagiarism detection purposes [Burd02].

Code cloning systems are used to find similar portions of source code in 
large  projects  (such  as  Linux  kernel  [Zhenmin05])  which  are  usually 
caused  by  improper  refactoring  or  copy-paste  style  programming. 
Identified  code  clones  are  then  reported  to  the  user  and  should  be 
rewritten in order to achieve correct output code.
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CCFinder

CCFinder  [Kamiya02]  is  an  industrial  quality  tool  for  detection  code 
clones  in  large  source  code  repositories  whose  basic  functionality 
(searching  for  copied  code)  is  remarkably  similar  to  the  second 
generation  tools  in  plagiarism  detection.  However  CCFinder  includes 
some important improvements described by various transformation rules 
which are executed during the tokenization process. 

Rules  for  C++  language  include  namespace  stripping  (std::string  to 
string),  template  stripping  (vector<int>  to  vector)  and  others.  Their 
detailed description can be found in [Kamiya00]. The rest of tokenization 
process is  fairly  similar  to that of  Jplag,  variables  are unified,  several 
unimportant  tokens  are  omitted,  etc.  Furthermore  the  authors  of 
CCFinder are aware of the fact that while some code clones are serious, 
others  (although  cloned  as  well)  are  unimportant  and  should  not  be 
reported at all (such as table initializations).

2.3 Plagiarism in Human Languages
Although a comprehensive review of tools used to combat plagiarism in 
human languages  is  out  of  the  scope  of  this  thesis,  due to  the  many 
similarities they share with the computer languages plagiarism detection, 
it is imperative to give full introduction also to this subject.

Human language plagiarism is very different from computer languages 
due to the two main facts:

• syntax of natural languages is often extremely complex and context 
sensitive, whereas most programming languages fit into the context-
free grammars category (sometimes even the LL class). Moreover 
formalized semantics of natural languages is virtually non-existent 
(although semantics of certain languages, such as C++, is extremely 
complex, its subsets can be easily tested and checked which is not 
possible in context sensitive human languages)

• although the idea of  paraphrasing (using thoughts and sentences 
from unreferenced sources in their original or only slightly modified 
versions)  can  be  roughly  compared  to  rewriting  of  a  computer 
program, the main problem of  computer languages (e.g.  the fact 
that two submissions to the same task are ideally identical) is not 
the issue in natural languages where their enormous ambiguity and 
complexity  renders two identical  submissions impossible even for 
fairly small tasks.

As the potential  market for natural languages is much larger than the 
market  of  computer  languages  (especially  in  English)  there  are  well 
established  commercial  tools  available  for  this  task  as  well  as  much 
larger  basin  of  possible  plagiaries  with  even  specialized  web  pages 
offering papers to almost any topic, the so called essay mills. 

This  means  that  plagiarism  detectors  has  to  cross-reference  the 
submitted essays  not  only  with  their  peers  but  possibly  also  with  the 
Internet  sources  and past  submissions8.  Therefore  most  of  these  tools 

8 Which caused large legal dispute about the possibly author & copyright law 
infringements by the testing companies as described in [Foster02, Churchill05]
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implement the two phase searching algorithms in which at first searching 
engine  is  used  to  narrows  the  set  of  likely-to-be  originals  of  the 
plagiarized work which are then juxtaposed for final results.

Turnitin

Another property of these systems is usually very detailed presentation of 
their results and automated submission batch testing. The most widely 
used system is the turnitin.com which is available both for Universities 
and  High  Schools  throughout  the  world  [Turnitin07,  iParadigms07, 
Carbone01].

Unfortunately due to the commercial nature of this service only little is 
known about the actual algorithms. Turnitin uses two phase search and 
final juxtaposition are returns complete report indicating an overall score 
of the document as well as detailed information about any problematic 
occurrence. 

Another key ability of turnitin is its cooperation with e-learning suites and 
clear and simple user interface for both students, and professors.

2.4 Conclusion
Due to the limitations of already existing plagiarism detection tools and 
the nature of the problem, future tools should improve in their semantic 
understanding  of  the  checked  submissions  to  allow  for  more  exact 
results.  As  the  semantic  understanding  of  input  languages  makes  any 
additions  harder,  using  some  form  of  an  intermediate  language  is 
generally good idea. Additionally, to allow larger submission databases to 
be processed either the algorithms must be simplified, or a two-phase 
search should be implemented.  An ideal detection tool should also focus 
on  integration  with  already  existing  e-learning  suites  to  improve  its 
practicality.

On the other hand, cross-language plagiarism detection seems to be of 
minor relevance as this particular technique is not suitable for cheating 
purposes9 [Arwin06].

9 However recent development of automatic translation tools between computer 
languages and generally stronger refactoring techniques may prove the importance 
of this feature in the future.
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3 Solution Overview3 Solution Overview

This  chapter  presents  the  overview  of  Crosscheck's  approach  to  the 
plagiarism detection. As a short introduction it does not give any reasons 
for the used techniques nor does it engage in their explanation, both of 
which can be found in  latter  chapters  dealing each one with a single 
stage in the plagiarism detection algorithm presented here.

3.1 Crosscheck's Stages
At  the  beginning  each  submission  is  translated  into  an  intermediate 
language.  This  translation  does  not  check  for  any  errors  in  the 
submissions and tries always to translate as much of the code as possible 
as it is assumed that all submissions are valid. After the submission is 
translated  into  the  intermediate  language,  several  analyses  are 
performed on the program to determine the following properties:

1. A program flow is created which is essentially the original program 
where all subroutine calls have been replaced with their respective 
code  so  that  the  whole  program is  only  one  function.  Obviously 
special cases such as recursion or function pointers must be dealt 
with separately.

2. Code reachability analysis is performed to find any code that will 
never  be  executed.  Any  findings  in  this  test  are  immediately 
reported as  suspects  since  unreachable  code  is  always  a  sign  of 
plagiarized coursework10.

3. Code importance analysis attempts to identify the key parts of the 
program. Knowing these parts can not only add weight to the later 
comparisons but also aid in determining relevant submissions which 
should  then  be  juxtaposed  one  to  one.  Additionally  important 
variables are also determined as equivalence in these variables may 
suggest plagiarized setup problem.

4. Variable propagation analysis tries to identify the most important 
constant variables so they can be used in the plagiarism comparison 
or explanation.

10Or extremely bad programming technique, both of which should not pass unnoticed in 
the academic environment.
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When the analyses are finished the program is streamed into a special 
parallel  string  of  tokens  representing  the  instructions  (with  some 
modifications)  and  these  streams  are  then  matched  using  slightly 
modified string folding algorithm. This shows parts which are similar (or 
same) in both submissions and therefore likely to be plagiarized. 

After the comparison, a reporter then converts the findings into a human-
readable  HTML  file.  The  whole  process  is  also  summarized  in  the 
following illustration:

It  is  obvious  that  the  most  costly  part  of  the  process  is  the  actual 
comparison using diagonal analysis due to the fact that each submission 
must be compared with any other submission to produce full results.

At the end a careful human inspection of suspected courseworks is (and 
will  always  be)  required  as  no  automated  system can  soundly  decide 
whether two programs are plagiarized or only coincidentally similar.
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4 Intermediate4 Intermediate  
LanguageLanguage

In  order  to  be  capable  of  detecting  plagiarism  across  multiple 
programming languages, Crosscheck translates all input sources into the 
intermediate  language  (IL).  Although  this  idea  of  analyzing  the 
intermediate language representation rather than the original code is not 
new, the previous implementations either used intermediate languages 
already available as inner form representations in various compiler suites 
[Arwin06] (notably  the  GCC  and  Microsoft  .NET),  or  created  rather 
simplistic intermediate language not capable of preserving many of the 
original program's features.

The obvious advantage of the former method is that together with the 
already existing IL  the  application  can also  benefit  from the compiler 
suite front-ends (analyzers, parsers) and even code optimizers. However 
these  intermediate  languages  are  designed  for  a  completely  different 
purpose and while they retain   100% semantic similarity with the original 
code  (otherwise  translated  programs  would  do  something  else  than 
sources)  they  drop  most  of  the  information  needed  to  evaluate  their 
similarity  for  the  plagiarism  detection  purposes,  e.g.  they  lack  the 
information about used control structures, program paradigms, variables, 
etc. With the usage of code optimizers the issue only deepens: while code 
optimization  may  rewrite  code  statements  in  a  way  that  semantically 
equivalent statements look the same way, it may add many false positives 
to the detection, which is more apparent especially with smaller tasks. 
Alternatively code transformation done by the compiler suite might add 
unwanted  code  (in  order  to  make  the  program  executable)  in  larger 
assignments  (such as object  oriented programming (OOP))  which may 
later obfuscate the detector.

Let us consider, for example, the simple example of displaying the digits 
of a given  integer in reversed order, i.e. the least significant digit first, 
the most significant digit last. This task can be easily performed either 
recursively  as  shown  in  the  left  column,  or  iteratively  (in  the  right 
column). 

- 17 -



1 void displayDigits(int x) {
2   if (x==0) return;
3   cout << x % 10;
4   displayDigits(x / 10);
5 }

1 void displayDigits(int x) {
2   while (x!=0) {
3     cout << x % 10;
4     x=x/10;
5   }
6 }

Text 6: Recursive and Iterative version of displayDigits()

Clearly these two snippets alone are not cheating as rewriting recursion 
(either  way)  is  more  complicated  than  the  computed  task  in  general. 
However  most  modern  compiler  suites  will  identify  the  tail  recursion 
present  at  line  4  in  the  recursive  code  and  thus  rewrite  the  whole 
function  iteratively  which  is  more  efficient  in  imperative  languages11. 
Hence  after  compiler  suite  preprocessing  these  two  examples  will  be 
false positives, i.e. marked as plagiarized.

On the other hand, it is not hard to imagine two programs that would 
yield a false negative result.  When the algorithm is more complicated, a 
simple  transition  from non-OOP to  OOP code  might  add  lots  of  code 
implementing the OOP functionality  which would then lead to  smaller 
proportion  of  the  original  code  in  the  compiler's  output  and  thus  to 
overall lower similarity mark. This effect could be even more significant 
when virtual methods and dynamic typecasting is used.

The second presented option was to design a new intermediate language 
with keeping in mind the needs of plagiarism detection system. However 
all previous attempts to do so concentrated on the possibility that when 
the  IL  is  designed  to  be  simple  enough  it  may  introduce  significant 
“optimizations” (in the plagiarism detection perspective) that will  drop 
semantical equivalence with the source in order to simplify the output so 
that various cheating attempts could be neutralized.  Great example of 
such IL is the inner form used in the CCFinder [Tamiya02].

While such code provides the necessary optimizations for the plagiarism 
detection, it drops valuable information about the source code structure 
that  can  later  be  used  to  analyze  the  outcome  and  either  assist  the 
teacher  with  understanding  the  plagiarism  methods  used,  or   more 
importantly determine whether the particular example is cheated or not 
according to the assignment bias.  

4.1 Crosscheck IL Architecture
To  overcome  the  above  mentioned  problems  associated  with  the 
intermediate  language  design,  the  Crosscheck  Intermediate  Language 
(hereinafter only xIL) must fulfill the following features:

• it  must be semantically equivalent to any of the possible source 
languages.  Although  this  can  be  theoretically  achieved  by 
demonstrating that the xIL is Turing-complete (based on the fact 
that all programming languages are at most Turing-complete), and 
the xIL indeed is Turing-complete (as is demonstrated in chapter 

11The assembler equivalent of the given examples is not presented as the transition is 
simplistic.
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XXYY), for the plagiarism detection purposes it is logical to assume 
that the xIL would be capable of mimicking control structures and 
even  paradigms  used  in  the  source  code.  With  wide  range  of 
source  languages  it  is  not  possible  to  satisfy  this  requirement 
without the inclusion of meta instructions described later, whose 
only purpose is to keep information about the used programming 
style12.  Another  benefit  of  meta  instructions  is  that  plagiarism 
detection can be computer on classic instructions and when the 
matches are done they can be filtered using the meta instructions' 
information.

• The intermediate language must also have as few instructions as 
possible to simplify the later analysis and these instructions must 
be  flexible  enough  to  be  transformed  in  the  later  phases  of 
Crosscheck analysis,

• yet it should define certain high-level instructions to prevent the 
inclusion of redundant implementation code as is done in compiler 
suites.  This  particularly  leads  to  a  very  simple  and  high  level 
memory model.

• Especially for Crosscheck needs, the xIL must be designed for the 
latter  abstract  interpretation.  This  means  the  language  must 
support parallelism (as a cut-down version of the nondeterministic 
computer).

• And of course it will not hurt if the xIL will be at least partially 
human readable so that the Crosscheck's results can be manually 
reviewed and understood.

These  requirements  ultimately  lead  to  a  language  that  shares  many 
common principles with both the assembly language (as the lowest level 
of human readable language) and some of the modern garbage collected 
high level languages. Its basic properties are explained and referenced in 
the following chapters together with various examples of xIL code.

4.1.1 Memory model
Memory in the Crosscheck's IL is garbage collected13 and invisible to the 
programmer  who  can  only  access  the  memory  using  variables.  While 
internally each variable is a pointer, these pointers are not available to 
the programmer with the only exception of function pointers used in call 
instructions.

12It is worth noting that the possible source languages should be limited only to one 
family of languages when using Crosscheck's cross-language capabilities as 
transformation from various families (e.g. functional and imperative) may result in 
extremely different code (not mentioning the fact that rewriting problem from one 
family to another is by far more complex than understanding its principle and thus is 
not interesting for plagiarism detector)

13However the garbage collector is not implemented in Crosscheck as its purpose is not 
to execute the code.
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Variables

Variables in xIL have names in specific format, starting with capital 'V' 
followed  by  a  number  representing  the  variable  identifier  itself.  If  a 
variable name has to be preserved, the binding of the variable should be 
preceded by a meta instruction.

VAR :: LETTER {0} DECIMALN
DECIMALN :: DIGIT {DIGIT}
DIGIT :: '0' | … | '9'

Although it is theoretically possible to use the same variable id for more 
than one physical variable, such practice is highly discouraged as xIL has 
no techniques to resolve name conflicts, in which always the closest (in 
terms of nested sequences) variable will be used.

xIL  does  not  require  the  variables  to  be  declared  prior  to  their  first 
assignment with rules similar to Python and other dynamic languages: 
The first occurrence of the variable is alsi its declaration, therefore the 
first  occurrence  (in  the  control-flow  sense)  must  be  an  assignment. 
Reading from an unassigned variable should raise an exception.

Each variable can be treated as an array using the index operator '[]'. The 
same rules  that  apply  for  single  variables  apply  also  for  the  indexes. 
When no index used, the default value (index 0) is returned.

The scope of the variable is always from its first occurrence (declaration) 
to the end of the sequence in which it was declared. Global variables are 
variables declared in the main program. 

4.1.2 xIL Elements
The xIL  syntax  is  case  and whitespace sensitive  (thus  resembling the 
Python language syntax in a way) where whitespace is used to identify 
the sequence of instructions. The other language tokens are: keywords 
(e.g.  instruction  names),  identifiers  (variable  names),  immediates 
(numerical, character, or string literals), operators and comments. 

Keywords

xIL's set of keywords is very limited and contains only the instruction 
names,  meta  instruction  classes  and  two  boolean  constants  as  is 
summarized in the following table:

assert
bind
call
eval
exec

false
inparallel
jump
meta
name

return
sequence
true

Table 4: xIL Keywords

Identifiers

IDENT :: (LETTER | '_') { LETTER | DIGIT |'_' }
LETTER :: 'a' | … | 'z' | 'A' | … | 'Z' | ...
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Identifiers  in  xIL  are  any  alphanumeric  literals  starting  with  either  a 
letter (from any language) or an underscore followed by arbitrary number 
of letters, numbers or underscores.

Immediates

IMM :: '”' STRING '”' | NUMBER
STRING :: char | '\\' | '\”' | '\n' | '\t'
NUMBER :: {-} (DECIMALN [ FLOAT ] | HEXN | OCTN | BINN)
FLOAT :: '.' DECIMALN
HEXN :: '0x' HEX { HEX }
OCTN :: '0o' OCT { OCT }
BINN :: '0b' (0|1) { 0|1 }
HEXN :: '0' | … | '9' | 'a' | … | 'f' | 'A' | … | 'F'
OCTN :: '0' | … | '7'

Immediates in xIL are very similar to other languages with the following 
differences:

• character  literals  are  written  as  strings  with  length  1,  all  line 
endings are converted to the unix style '\n' (0x0A)

• floating point numbers cannot use the exponent notation

• octal numbers have the prefix of '0o' instead of '0' known from C

Operators

xIL supports a reduced range of both binary and unary operators known 
from other  languages.  The following  table  lists  all  available  operators 
ordered by their precedence (decreasing) with a brief explanation:

Operators Meaning

(), [] Parentheses, Array access

! Logical negation, or bitwise complement 

*, /, %,** Multiplication, Division, Modulus and Exponent

+, - Addition, Subtraction

<=, <, >, >= Lesser or equal, lesser, greater, greater or equal

==, != Equal, not equal

&, |, ^ And, Or, Xor (logical and bitwise)

Table 5: Precedence of Operators in xIL

If  an operator can have both logical  and bitwise meaning,  the correct 
operator is assigned dynamically based on the variable types. Therefore 
logical and bitwise variants have the same precedence in xIL. 

As  xIL  does  not  support  assignments  in  expressions,  it  also  lacks  all 
assignment operator variations well known from languages such as C++ 
or Java. For the purposes of simplicity xIL also lacks support of operators 

- 21 -



which can be expressed by other more general ones (for instance bitwise 
shift is represented by multiplication or division by the powers of 2).

Division in xIL behaves in the same way as it does in most dynamically 
typed languages, i.e. division of two integer operands will always return 
an integer, division with at least one float argument yields float result. 

Comments

xIL  supports  comments  in  the  form known from Python programming 
language,  i.e.  No  mutli-line  comments  are  allowed  and  single  line 
comments are prefixed with '#'. By default comments are not generated 
by xIL generators as comments from source files are translated to meta 
instructions.

4.1.3 Expressions in xIL
Expressions in xIL (the right hand sides of assignments using the eval 
instruction) are defined using the terms:

• variable, and immediates are terms

• variable indexed by a term is a term

Terms together build the expressions:

• term is an expression

• negation of an expression is an expression

• two expressions joined with a binary operator are an expression

• (expression) is an expression

4.1.4 Instructions
Crosscheck IL commands, control structures and functions are in general 
called  instructions,  of  which  this  chapter  serves  as  a  reference.  The 
instructions are ordered alphabetically and each instruction is presented 
with E-BNF defining its complete grammar, a description and a simple 
usage (for more details refer to the chapter Translation from C++, where 
are listed more complex examples of IL programs together with their C+
+ equivalents). 

Assert

ASSERT :: assert CONDITION 
CONDITION :: var REL imm | var REL var
REL :: == | != | <= | >= | < | >

The assert instruction allows conditional execution upon the result of the 
evaluation of the condition. If the condition is true, the code following the 
assert  instruction to  the  end of  the sequence will  be  executed,  if  the 
condition evaluates to false, the following instructions are not executed. 
The condition can be either true, false,  or a comparison of  either two 
variables or variable and an immediate.
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Using the assert instruction one can easily write the if control structure 
well known from other programming languages:

1 eval v001 = 56 
2 sequence:
3   assert v001 == 56
4   eval v002 = “Condition True”
5   exec (v002) # writeln

Bind

BIND :: bind var = var

The bind instruction is used to reference the right-hand side variable into 
a left-hand side variable. This means that any change to the left variable 
will also change the right one (as they share the same memory). Once 
variable  is  bound  the  bond  will  survive  the  return  instructions.  To 
unbound the variable, variable must be bound to itself.

Variable binding also survives the return statements which means that 
when a  variable is  bound inside  a  sequence and this  variable  is  then 
returned, the binding survives.

A simple example of the bind instruction follows:

1 eval v001 = 45
2 bind v002 = v001
3 eval v002 = 67
4 assert v001 == 67 # true

Call

CALL :: call (var|imm) '(' [var {,var }] ')'
        [':' var {,var }]

Call instruction is used to call a subroutine (in the IL context a sequence) 
specified either by a variable or by an immediate address. If the sequence 
accepts input parameters, they can be defined in the parentheses after 
the sequence name as variables. If a sequence returns any results their 
variables must be specified after the colon at the end of parameters list. 
Please note that all parameters are always passed by their value. If by 
reference behavior is needed, the following syntax should be used:

1 eval v001 = 1
2 call 5(v001):v001
3 return
4 sequence byReference(v002):
5   eval v002 = v002 1 +
6   return v002

Eval

EVAL :: eval var '=' EXPRESSION

Eval is virtually an assignment operator and is the only instruction in the 
IL that changes the variables' values. Due to this behavior, IL is strictly 
imperative language and is  not capable of  implementing source codes 
from  functional  languages  effectively.  However  this  does  not  mean 
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Crosscheck  cannot  be  used  to  check  for  plagiarisms in  the  functional 
languages because the amount of code added to the functional programs 
in order to convert them to the IL is almost the same in all submissions.

An  example  of  the  eval  instruction  can  be  found  under  the  call 
instruction.  

Exec

EXEC :: exec '(' [var {,var }] ')' [':' var {,var }]

The exec instruction is very similar to the instruction call with the only 
difference being that exec is calling code out of the scope analyzed by 
Crosscheck. This usually means either a predefined code similar to all 
submissions, or a call to source language's standard library, etc. Exec is 
also always accompanied by meta instruction specifying the call. 

Inparallel

INPARALLEL :: inparallel ':' INSTRUCTION { INSTRUCTION }

The inparallel block is used to denote sequential instructions that can be 
executed  in  parallel.  A  member  of  inparallel  block  can  also  be  the 
sequence instruction as shown in the example below:

1 inparallel:
2   exec ()
3   sequence:
4     eval v001 = 1
5     exec () 

Jump

JUMP :: jump [ imm | var ]

The jump instruction is used to jump in the code. The only parameter of 
the instruction is the immediate or variable with address of the target 
instruction.  Jump  cannot  point  to  named  sequence  instructions  with 
parameters and those which returns any value14. Jump is the instruction 
behind all cycles in the IL:

1 eval v001 = 10
2 sequence:
3   assert (v001>0)
4   eval v001 = v001 1 -
5   jump 3

Return

RETURN :: return [ var {,var} ]

The return instruction is used to return from the sequence to the calling 
code.  Return  can  be  followed  by  any  number  of  variables  to  return 
(separated by commas). Please note that in this case as well as it is with 

14This is not checked though.
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the function  call  all  variables  are  always  returned by value,  never  by 
reference.

The following code shows a simple recursive function that calls itself until 
its parameter is equal or less than zero:

1 sequence (v001):
2   sequence:
3     assert (v001 > 0)
4     eval v001 = v001 1 -
5     call 1(v001)
6   return     

Sequence 

SEQUENCE :: sequence [ SEQUENCE_ARGS ]: SEQUENCE_BODY
SEQUENCE_ARGS :: '(' var {, var } ')'
SEQUENCE_BODY :: INSTRUCTION { INSTRUCTION }

Sequence  is  the  instruction  instantiating  a  block  of  sequentially 
executable  code.  Sequence  instruction  can  have  any  number  of 
arguments (expressed as variables) in optional parentheses. Such a block 
is  callable  either  by  call  or  jump  instructions  (the  latter  only  if  the 
sequence has no arguments15).

Examples  of  sequence  instruction  usage  can  be  found  in  previous 
instructions.

4.1.5 xIL Metainstructions
Metainstructions are very important concept in the xIL design as they 
allow the language to express not only the formal semantics of the source 
program but also the different techniques used. In this chapter the meta 
instruction and its options is presented in great detail as this instruction 
is crucial for the Crosscheck's detection capabilities.

This instruction can be anywhere in the xIL source code and it is always 
applied  to  the  first  non-meta  instruction  after  it.  If  two  or  more 
metainstructions  are  sequenced,  they  all  apply  to  the  first  non-meta 
instruction following them.

Each metainstruction begins with the keyword meta followed by the meta 
type description and the value delimited by double quotes (double quotes 
inside the meta value are coded using the escape sequences '\”').

By default, Crosscheck recognizes the following meta instruction types:

Comment

Comment is probably one of the simplest meta types as it is used only to 
store  the  comments  present  in  the  source  inputs.  The meta  comment 
instruction is  special  among the other  meta instructions as  it  actually 
corresponds to a source input element. Therefore other meta instructions 
can refer to it as described in the example below, where source and line 

15Note that jump instruction cannot check whether the target sequence returns any 
values, which may potentially cause a runtime exception.
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meta types are referring both to the eval and exec instructions and to the 
meta comment instruction at line 3:

1 # Prints “Hello world”
2 print “Hello world”

1 meta source “example.py”
2 meta line “1”
3 meta comment “ Prints \”Hello world\””
4 meta line “2”
5 eval v001 = “Hello world”
6 meta name “cout”
7 exec(v001)

Text 7: meta comment Instruction Example

Control

Control is a special meta instruction that is used to determine what kind 
of control structures has been used in the input source. Similarly to the 
meta type instruction,  its  values  are  not  determined exactly,  however, 
some standard values used throughout Crosscheck are presented in the 
following table. Control is particularly helpful when identifying means of 
plagiarism used in different submissions. 

For  example,  consider  the following original  and plagiarized pieces  of 
code. In this simplified example, it is obvious even to the naked eye that 
the cheater changed the original  for cycle to while and although the xIL 
code (without meta instructions is virtually identical in both cases (the 
situation would be only slightly different if do-while cycle would be used) 
the  control  meta  instruction  clearly  preserves  the  information  of  how 
these two blocks of code were translated:

1 for (int i=0;i<10;i++)
2   cout << i << endl;

1 int i=0;
2 while (i<10) {
3   cout << i << endl;
4   i++;
5 }

 1 meta line “1”
 2 meta control “cycleFor”
 3 eval v001 = 0
 

 4 sequence:
 5   assert v001 < 10
 6   meta line “2”
 7   eval v002 = “\n”
 8   meta name “cout”
 9   exec (v001,v002)
10   meta line “1”
11   eval v001, v001+1
12   jump 4   

 
 1 meta line “1”
 2 eval v001 = 0
 3 meta line “2”
 4 meta control “cycleWhileDo”
 5 sequence:
 6   assert v001 < 10
 7   meta line “3”
 8   eval v002 = “\n”
 9   meta name “cout”
10   exec (v001,v002)
11   meta line “4”
12   eval v001, v001+1
13   jump 4  

Text 8: meta control Example with two different cycles
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Value Description

cycleFor A  cycle  which  automatically  manages  its  own  control 
variable and is usually executed for a known number of 
repetitions. A typical example is the for(;;) cycle from the 
C/C++ languages.

cycleWhile
Do

A cycle driven only by the condition that will execute 0, 
1,  or  multiple  times,  i.e.  the  condition  is  evaluated 
before evaluating the cycle body, e.g. while cycle from C/
C++.

cycleDoWh
ile

Cycle  driven  by  the  condition,  where  the  condition  is 
evaluated after the body resulting in the body of cycle 
being  evaluated  at  least  once  in  each  case.  Typical 
example is the repeat – until cycle known from various 
Pascal language dialects.  

cycleForIn Cycle  iterating  over  an  iterable  object  or  collection. 
Similar to the for cycle because no control variable is 
used. This cycle is usually found in high level languages, 
such as Python (for in) and is commonly known as for 
each cycle.

cycleBreak Statement used to terminate the execution if the whole 
cycle  from  the  cycle's  body  (e.g.  a  jump  to  first 
instruction after the cycle body in assembly language).

cycleConti
nue

Statement  used  to  terminate  the  current  pass  of  the 
cycle, e.g. jump to the cycle's condition.

conditionIf Standard conditional  statement known from almost all 
programming languages. 

conditionEl
se

The part of a conditional statement that is executed if 
the condition is false.

conditionC
ase

Multiple  branching  either  upon  an  integer  variable 
(C/C++) or general (Python). Usually known as switch 
statement  (notable  exception  being  Python  language 
which uses the elif statement for the same purpose).

conditionIf
Op

Ternary  operator  “?:”  known  from  C/C++  and  other 
languages. 

exceptionR
aise

Statement  used  to  raise  an  exception,  in  general 
informing the user about an error.

exceptionC
atch

Statement catching the exception attempting to remedy 
the situation.

function General function. 

method General  method,  i.e.  function  with  first  implicit 
parameter being the object itself.

methodVirt
ual

Virtual method

Table 6: meta control Standardized Values
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Function

Function meta type determines the definition of a function. The value of 
the  instruction  is  the  name  of  the  function.  This  meta  instruction  is 
followed by couples of meta type and meta name instructions identifying 
each of the function's arguments (where applicable).

1 void myFunction(int i) {
2   int test=i+1;
3   return test
4 }

1 meta function “myFunction”
2 meta type “integer”
3 meta name “i”
4 sequence(v001):
5   meta type “integer”
6   meta name “test”
7   eval v002 = v001+1
8   return v002

Text 9: meta function Instruction example

Language

The language meta instruction determines the language of input source 
from  which  the  xIL  is  taken.  Along  with  the  line  and  source  metas, 
language  is  also  valid  for  multiple  following  instructions  until  new 
language is defined. 

As each new Crosscheck's input language should add its own value for 
the language, in this project only the following language values are used:

Value Language Description

c Standard C language (based on the gcc)

cpp Standard C++ language (based on the g++)

java Standard Java language (base on the Sun Java 1.4)

Table 7: xIL Language Values Recognized by Crosscheck 

Although additional languages are possible, their language identifiers will 
be ignored by Crosscheck16. 

Line

To determine the line of input source the meta line instruction is used. 
The  scope  of  meta  line  instruction  is  not  only  the  next  non-meta 
instruction,  but  the  line  is  valid  until  next  meta  line  or  meta  source 
instruction.  Therefore  if  a  single  input  source  line  is  translated  into 
multiple  xIL  instructions,  meta  line  instruction  must  be  the  first 
instruction in the sequence, as is shown in the example for meta source 
instruction later in this chapter. 

16This does not mean that Crosscheck will not be able to check if they are plagiarized, 
only that no additional information will be available on positive matches (assuming no 
modifications are done to the Crosscheck itself).

- 28 -



Name

This meta type is used to determine the name used in the input source for 
identifiers (e.g. variables, new types, etc. ). For a simple example, see the 
meta  function.  Names are  not  assigned to  temporary  variables  in  the 
input source and to the variables created during the translation to the 
xIL. 

The name meta type is also used to determine which external functions 
are called using the exec instruction, as shown in the example below:

1 cout << “Hello world” 1 eval v001 = “Hello world”
2 meta name “cout”
3 exec(v001)

Text 10: meta name Example with external calls

Source

This meta type is used to describe the input source file from which the 
following  instructions  were  translated.  As  the  meta  line  instruction, 
source does not apply only to the next non-meta instruction, but it's scope 
is extended till new source instruction is found. 

Crosscheck  puts  source  and  line  instructions  before  each  callable 
sequence instruction to determine the source file for the whole function17, 
as shown in the following example (comment metas have been left out for 
simplicity reasons):

1 // File main.cpp
2 #include “example.h”
2 int main(int argc, char** argv) {
3   displayMe();
4   return 0;
5 }

1 // File example.h
2 void displayMe();

1 // File example.cpp
2 #include “example.h”
3 void displayMe() {
4   cout << “This is me!“ << endl;
5 }   

 1 meta function “displayme”
 2 meta source “example.cpp”
 3 meta line “3”
 4 sequence():
 5   meta line “4”
 6   eval v001 = “This is me!”
 7   eval v002 = “\n”
 8   meta name “cout”
 9   exec(v001,v002)
10 meta function “main”
11 meta type “integer”
12 meta name “argc”
13 meta type “string”
14 meta name “argv”
15 meta source “main.cpp”
16 meta line “2”
17 sequence(v003,v004):
18   meta line “3”
19   call 4()
20   meta line “4”
21   eval v005 = 0
22   return v005

Text 11: meta line and meta source Instructions Example

17However, this approach is not required by the pure xIL definition.
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Type

This meta is used to specify the type described in the input source. The 
following families of  input source types are recognized and dealt  with 
according to the table below. As the types are usually replaced with a 
family identifier, at this point some semantical information is usually lost. 
This, however, does not pose any threat to the Crosscheck's recognizing 
abilities due to the fact that for software plagiarism detection it is safe to 
operate  only  on  type  families.  In  fact  it  is  even desirable  that  simple 
change from byte to word18 should appear as identical code. 

Type Family Value Comments

any integer, 
boolean

integer

any floating 
point

float

any string, char string

any reference reference Type is specified by the target object.

any pointer pointer

object class 
name

Type is the class name unless the class 
is  a  built-in  special  class  for  which 
additional rules apply.

Table 8: meta type Families

4.2 Expressiveness of xIL and input 
languages

In order to use xIL as the intermediate language in Crosscheck, we need 
to answer the following two important questions:

1. Is  xIL  able  to  express  all  possible  algorithms  written  in  any  of 
possible  input  languages?  (i.e.  can  any  program  in  the  input 
language be translated into a semantically  equivalent program in 
xIL)

2. Does xIL preserve enough information about the input sources to be 
useful for the plagiarism detection purposes? (i.e. how well does the 
comparison of  two xIL  codes estimate the  relation between their 
sources)

It turns out, that the answer to the first question is very simple using the 
concept of Turing Machine [Kolar04]: 

18For example in the Object Pascal programming language.
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4.2.1 Turing Completeness of xIL
To demonstrate that any program written in any possible input language 
can be also written in xIL it is only needed to demonstrate that xIL is a 
Turing complete language, therefore any program (algorithm) capable of 
being run by a Turing Machine (any program written in most current 
programming languages) can be also written in the xIL. 

The Turing completeness of xIL will be shown by proving that another 
minimalistic  programming  language  that  has  been  previously 
demonstrated to be Turing complete. Such a language is for instance the 
counter  machine  formalized  by  Martin  Minsky  in  [Minsky67].  This 
language  has  arbitrary  number  of  integer  variables  and the  following 
three functions:

• INC (r) – z:=z+1

• DEC (r) – z:=z-1

• JZ (r, z) – if (r==0) jump to instruction z, otherwise continue

Now it is easy to show how to emulate these instructions in the xIL. The 
only problem is that in xIL the jump instruction can jump only to the 
sequences. Not optimal, yet formally correct solution is to preface each 
instruction  in  xIL  with  a  sequence  instruction,  as  is  shown  in  the 
following demonstration:

1 INC (r) 1 sequence:
2   eval r = r+1

2 DEC (r) 1 sequence:
2   eval r = r-1

3 JZ (r, z) 1 sequence:
2   assert r == 0
3   jump z

Text 12: Counter Machine Instructions and their xIL equivalents

Although this definition is formally correct, emulating an universal Turing 
machine using the above algorithm (and using counter machines) will add 
exponential overhead. Without formal verification, we will state that xIL 
is  indeed  Turing  complete  because  it  contains  multiple  variables  and 
arrays, recursion and conditional branches.

4.2.2 Semantic Preservation in xIL
Unfortunately for the plagiarism detection purposes it is not enough to 
demonstrate the Turing completeness of the xIL as the proof that xIL can 
code any thinkable program from the input languages does not imply that 
such a description is usable for cheating detection. Moreover, the mere 
fact that xIL is theoretically capable of coding any algorithm does not 
mean that the translation process is simple, nor that the semantics of the 
internal parts of the program is preserved. This is due to the fact that 
Turing Machine is concerned only about the form if the input and output 
on the tape, not the program internals.
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Based  on  the  basic  principle  of  Crosscheck's  detection,  the  most 
important  characteristics  of  the  program  are  the  order  in  which  the 
instructions  are  executed  (only  their  first  time  execution)  and  their 
importance. Therefore any translation process should aim to preserve as 
much as possible of these two key properties.

4.3 Translation from C++
To  show  the  capabilities  of  the  xIL,  its  limitations  and  practical 
implications, a translation from the C++ language (which can be viewed 
as the most powerful (in terms of expressiveness19) among the imperative 
source languages) is described in this chapter. As some of the aspects of 
the language are almost identical to the xIL they are not covered, while 
others such as object oriented programming and complex expressions are 
described in much greater detail.

All  of  the  following  examples  should  also  contain  numerous  meta 
instructions which will determine the original processes used. However 
these instructions have been omitted from the examples in this report as 
they  unnecessarily  increase  the  length  of  the  examples  and  does  not 
provide any additional information to the translation process.

This chapter should not be taken as an xIL or C++ translation reference. 
Full specifications of xIL semantics and of the translation process can be 
found in the source code documentation of the respective functions. 

Due to space constraints the complete reference together with additional 
information on metainstructions and other relevant data can be found 
only in the source code documentation in respective modules.

4.3.1 Preprocessor
While parsing, all local includes (i.e. double quoted includes) are treated 
accordingly and the required files are imported. Since xIL output is only 
one file  created  from possibly  many  C++ implementation  source  files 
there may be several identifier redeclarations which are reported as a 
warnings during the translation.  All  other imports are omitted as it  is 
presumed that non-local files are not parts of the submission.

Preprocessor macros are supported only for the purposes of conditional 
translation  and  simple  constants,  which  are  translated  as  new  global 
variables. 

4.3.2 Namespaces
xIL does not recognize namespaces as each namespace element is unique 
as  a  function  address,  or  constructor's  address  for  objects.  Other 

19One can argue that Java or Python are more expressive languages due to their 
advanced high level features such as garbage collection or even dynamic data types. 
However as these aspects are native to the xIL itself it is obvious that their 
translation to xIL will be as straightforward as possible. In this sense the “most 
powerful” can be also viewed as the most different language (within reasonable set of 
widespread imperative languages).
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namespace elements such as various type definitions and not part of the 
output xIL. Global variables are unique due to their variable addresses.

4.3.3 Variables
According  to  the  xIL  specification  all  variables  are  transformed  to 
variables. Each variable can be used as an array with either immediates 
or variables as indexes. For simple types such as integers and floats this 
mapping is easy. However, the following types need special consideration:

Unions

As  all  variables  in  xIL  are  untyped,  there  is  no  need  for  unions  and 
therefore unions are treated as simple variables (means their members 
are discarded).

Enumerations

All  enumerations  are  represented  as  integer  types  with  their  values 
converted to positive numbers during the translation process.

Strings

Strings  and  constant  char  pointers  are  treated  equally  for  the  xIL 
purposes.  As  each  variable  can  hold  a  string  literal  by  itself.  Using 
indexes  on  the  variable  will  given  access  to  specific  characters.  Any 
method of std::string is translated into an exec instruction.

4.3.4 Pointers and References
References can be easily emulated using the bind instructions. Anytime a 
reference variable is initialized to another value, the instruction bind is 
used.  When  variable  is  bound,  the  bond  is  carried  across  return 
statements thus allowing xIL to return references from functions.

Pointers  on  the other  hand are  a  concept  completely  alien to  the xIL 
notion. Changes to dereferenced pointers are normal variable changes in 
xIL and changes to addresses are equal to binding variables in the xIL. 
The following table summarizes the most common pointer operations and 
their xIL alternatives. In all these cases any variable is a pointer.

C++ xIL

p=q bind p = q

*p=6 eval p = 6

p[4]=7 eval p[4] = 7

p++ bind p = p[1]

p=NULL bind p = r0

Table 9: Pointer Operations in xIL
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Operator New

While  operator  delete  is  quite  easy  since  xIL  is  in  theory  garbage 
collected language, the new operator poses some serious problems. When 
a new memory is allocated, xIL destroys any bindings by bounding the 
variable to itself. This essentially creates a new instance of variable which 
can then be filled with the appropriate contents. 

New arrays of simple types are omitted (there is no need to allocate the 
memory for arrays since each variable is essentially an unlimited array in 
itself).  More  complex  types  are  then  allocated  using  their  respective 
constructors.

4.3.5 Function calls
All  functions  are  translated  into  xIL  as  parametrized  sequences.  All 
variables are passed on a by value basis (meaning that their values are 
copied).  This  implies  problems  when  the  parameters  are  either 
references, or pointers as changes in their values (in the case of pointers 
of their dereferenced values) should be visible also in the caller's code. 

To  overcome  this  problem,  xIL  uses  the  technique  known  from 
simulations  of  functional  programming  languages  [Finkel96].  When 
function needs pointers and/or references they are passed normally by 
value, and the number of parameters the function returns is increased by 
one.  When  the  function  returns  the  parameters  these  are  used  to 
overwrite  values  in  the  caller's  context  as  is  shown  in  the  following 
example:

1 int fnc(int i, int& j, int* k) {
2   i=5;
3   j=10;
4   k=7;
5   return i
6 }

? q=1
? q=fnc(a,b,c);

1 sequence(r1,r2,r3):
2   eval r1 = 5
3   eval r2 = 10
4   eval r3 = 7
5   return r1,r2,r3

? eval r8 = 1
? call 1(r5,r6,r7):r8,r6,r7

Text 13: Function and function call example.

4.3.6 Structures and Objects
First important thing about xIL and Object Oriented Programming (OOP) 
is that xIL does not recognize access specifiers (such as private or public) 
and all members and methods are public20. Therefore in the following text 
structures and classes are treated equally21 (and referenced as classes 
only).

Any object is represented by a single variable. Class members are stored 
into designed indexes and so are method addresses.  Each method has 

20This makes sense when realizing that xIL does not need to control whether access 
rights are not violated, an assumption for any program checked against plagiarism is 
that the program is working, thus corresponding to all formal requirements.

21This notion is consistent with the general idea of structures and classes in C++, 
where structures are essentially classes with default access set to public[Eckel00].
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automatically added the first parameter which is the object itself in a way 
well known from the Python programming language. Normal methods are 
added to new indexes. Virtual methods are stored in the same index as 
the methods they are overriding. Each methods returns not only its result 
type, but also the object itself in the first place. 

To create an object a constructor must be called. This constructor is not 
the same as constructors  in C++ as the xIL constructor only fills  the 
addresses of methods in the object variable as shown in the following 
slightly longer example:

1 class A {
2   int x;
3   void setx(int j) {
4     x=j;
5   }
6   virtual int doSomething(int z) {
7     x=z+5;
8     return x;
9   }
10 } ;
11 class B:public A {
12   virtual int doSomething(int z) {
13     return z+x;
14   }
15   int getx() {
16     return x
17   }
18 } ;

? A* x=new B();
? x.setx(5);
? x.doSomething(4);

 1 sequence:
 2   eval r0[1] = 5
 3   eval r0[2] = 8
 4   return r0
 5 sequence(r1,r2):
 6   eval r1[0] = r2
 7   return r1
 8 sequence(r3,r4):
 9   eval r3[0] = r4+5
10   return r3,r3[0]
11 sequence:
12   call 1():r5
13   eval r5[2] = 16
14   eval r5[3] = 19
15   return r5
16 sequence(r6,r7):
17   eval r8 = r6[0]+r7
18   return r6,r8
19 sequence(r9):
20   return r9,r9[0]

? bind r10 = r10
? call 11(r10)
? call r10[1](r10,5):r10
? call r10[2](r10,4):r10,r

Text 14: Classes and Inheritance in xIL

4.3.7 Control Structures
Generally, all control structures known from the C++ language are easily 
transformed to  xIL.  This  chapter  lists  the  most  common of  them and 
shows their counterparts in the xIL.   Although the following examples 
contains only blocked examples, single lined statements can always be 
transformed as blocks containing only one statement and therefore the 
presentation is satisfactory.

If and If-Else Clauses

If  clause  is  easily  transformed  into  the  xIL  using  the  inparallel 
instruction. In case of missing else statement, the inparallel instruction 
has only one branch and can thus theoretically be replaced with sequence 
instruction. However, for the plagiarism recognition purposes this is not 
performed. Obviously the ternary operator ?: is only a special case of if-
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else structure and is dealt with accordingly. The following example shows 
the translation template for if-else clause:

1 A
2 if (condition) {
3   B
4 } else {
5   C
6 }
7 D

 1 A
 2 eval r = condition
 3 inparallel:
 4   sequence:
 5     assert r != 0
 6     B
 7   sequence:
 8     assert r == 0
 9     C
10 D

Text 15: Translation of the if-else clause

It  is  worth noting that the translation of  the condition itself  (which is 
essentially  an  expression)  might  be  much  more  complicated  and  is 
covered later in a special subchapter.

Switch Clause

Switch case is very similar to the nested if-else statements. When some 
case branches does not contain break statements, other statements to the 
first break or end of the switch statement are attached, as is shown in the 
following example:

 1 A
 2 switch (expr) {
 3   case a:
 4     A
 5     break
 6   case b:
 7     B
 8   case c:
 9     C
10   case d:
11     D
12     break
13   default:
14     E
15 }
16 F

 1 A
 2 eval r=expr
 3 inparallel:
 4   sequence:
 5     assert r==a
 6     A
 7   sequence:
 8     assert r!=a
 9     inparallel:
10       sequence:
11         assert r==b
12         B
13         C
14         D
15       sequence:
16         assert r!=b
17         inparallel:
18           sequence:
19             assert r==c
20             C
21             D
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22           sequence:
23             assert r!=c
24             inparallel:
25               sequence:
26                 assert r==d
27                 D
28               sequence:
29                 assert r!=d
30                 E
31 F

Text 16: Switch clause translation

Although  this  method  might  seem  more  lengthy  and  complex  than 
necessary it provides the switch template in its most general form. The 
insertion  of  code  (statements  C  and  D  in  the  example)  additionally 
increases  any  possibilities  of  matches  in  altered  code  with  the  same 
functionality by grouping code together without unnecessary xIL code.

For and While Cycles

Cycles  are  translated  straight  into  xIL  using  sequences  and  loops  as 
shown in the following examples for the two most common cycles (for and 
while). Other special cycles existing in other languages might seem quite 
different (for instance the foreach cycle in Java or the for in cycle in the 
Python  language),  yet  they  can  always  be  easily  transformed  to  the 
standard cycles with their bodies intact [Aho06].

1 A
2 for (init;cond;iter) {
3   B
4 }
5 C

1 A
2 init
3 sequence:
4   eval r = cond
5   assert r == 1
6   B
7   iter
8   jump 3
9 C

Text 17: For cycle translation into xIL

1 A
2 while (cond) {
3   B
4 }
5 C

1 A
2 sequence:
3   eval r = cond
4   assert r == 1
5   B
6   jump 2
7 C

Text 18: While cycle in xIL

The two examples above also show the remarkable similarity between the 
two cycles in the  xIL as both the cycles have same starting and ending 
instructions. This is the simplest possible example of a key function of xIL 
which is to bring slightly different subscriptions closer22.

22The same functionality as can be seen in tools such as XPlag when utilizing 
intermediate language of compiler suites. However, this ability of xIL is tailored 
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The  following  example  shows  the  break  and  continue  statements  and 
their translation in the “more complex” for cycle:

1 for (init;cond;iter) {
2   A
3   continue;
4   B
5   break;
6 }
7 C

 1 init
 2 sequence:
 3   eval r = cond
 4   assert r == 1
 5   A
 6   jump 9
 7   B
 8   jump 11
19   iter
10   jump 3
11 C

Text 19: Break and Continue statements

4.3.8 Expressions
Possibly the hardest part of translation from C++ to xIL is the translation 
of various C++ expressions as xIL lacks many possibilities for creating 
them that  C++ takes  for  granted (notably calling functions and using 
their results inside expressions).

To construct the expression tree, the simplified C++ expression parsing 
grammar is used with only limited support of operators precedence as 
shown in the following example. Please note that not all grammar rules 
are explained (such as new declarations, etc.) for the simplicity reasons:

Assignment :: Logical AssignmentC
AssignmentC :: (=|+=|-=|*=|/=|%=|&=|^=|”|=”|<<=|==>)
               Logical AssignmentC
AssignmentC :: empty
Logical :: Comparison LogicalC
LogicalC :: (“||”|&&|^|&|”|”|!) Comparison LogicalC
LogicalC :: empty
Comparison :: Shift ComparisonC
ComparisonC :: (==|!=|<=|>=|<|>) Shift ComparisonC
ComparisonC :: empty
Shift :: AddSub ShiftC
ShiftC :: (<<|>>) AddSub ShiftC
ShiftC :: empty
AddSub :: MulDivMod AddSubC
AddSubC :: (+|-) MulDivMod AddSubC
AddSubC :: empty
MulDivMod :: Item MulDivModC
MulDivModC :: (*|/|%) Item MulDivModC
MulDivModC :: empty
Item :: {“-”} ( “(“ Assignment “)” | ConstantItem |
        VariableItem [Index])
Index :: “[“ Assignment “]”
ConstantItem :: LITERAL|FLOAT|INTEGER
VariableItem :: [*\&]identifier [FunctionCall]
FunctionCall :: “(“ Assignment { , Assignment } “)”

especially for the cheating detection purposes.
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During parsing, each C++ expression is parsed into an expression tree. 
This  tree  is  then scanned recursively  from its  leaves  to  the  root  and 
certain  operations  are  performed  that  splits  the  large  C++ tree  into 
smaller expressions (if necessary) to allow their translation into the xIL. 
During the translation process all calls to functions or methods (thus also 
calls to user specified operators of complex types) are recognized and 
replaced by proper function calls. 

This is briefly shown in the following illustration and text (all variables 
except the defined variable x and variable y are objects and these objects 
have redefined operator +.

int x=(3+5*(10-o.x(3,5+y))+2+(o+z)

Text 20: Simple expression example.

After the creation of the expression tree, the tree is then parsed and the 
following rules are  checked:
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Rule / Root 
token

Comments

Assignment 
operator

Whenever  an  assignment  operator  is  found,  the 
whole subtree is then extracted as a new expression 
which  will  be  evaluated  before  the  processed 
expression and its occurrence is replaced with the 
left side of the assignment operator

Function call When a function call is translated, its nodes can be 
either simple variables, or expressions. In the latter 
case these expressions are extracted as assignment 
operators  to  new variables  which  in  turn  will  be 
used in the function call. The function call is then 
translated into a call instruction before the parsed 
expression  and is  replaced by  its  returning value 
(into a new variable) in the expression.

Operator  on 
objects

If  operator  is  defined  for  the  parameters 
(essentially  if  the  operator  is  defined for  the  left 
operand, the operator is replaced with function call 
to  this  operator  and the rule for  function calls  is 
used.

Special 
operators  on 
built-in types

When  a  special  operator  not  available  in  xIL  is 
found,  (such  as  << or  >> (bitshifts))  on  built-in 
variable  types  is  found,  it  is  replaced  by  its  xIL 
alternative. In this case by integer multiplication or 
division.

Special 
operators  on 
complex types

If their codes are not found, they are replaced with 
an exec call.

C++  operators 
(++,--) preorder

These  operators  are  evaluated  into  new  eval 
instructions  that  are  placed  after  the  parsed 
expression. Their value is replaced by the variable. 
Additionally these operators are grouped together, 
e.g. X++++-- is evaluated as eval x = x 1 +
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Table 10: Expression translation rules

After applying the above rules, expression tree from the given example 
breaks into the following smaller trees:

These expression trees are then translated into the following xIL code 
(for simplicity reasons instead of variable numbers, the variable names 
are used in this piece of code):

1 eval v2 = 3
2 eval v3 = 5 y +
3 call o.x(o,v2,v3):o,v4
4 call o.operator+(o,z):o,v1
5 eval x = 10 v4 – 5 * 3 + 2 v1 + +

Text 21: Translated expression in xIL

Note that the xIL expressions are in postorder notation to allow easier 
checking and further analysis. 
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5 Abstract5 Abstract  
InterpretationInterpretation

Although the principle of abstract interpretation has been formalized and 
explained in [Cousot77] because this tool is not well known outside the 
domain  of  static  analysis,   it  will  be  introduced  in  this  chapter  with 
respect to its use in the Crosscheck system.

Abstract interpretation formally defines a way to generally reason about 
certain aspects of the program using technique which can be informally 
described as partial (or approximative) execution.

This technique provides excellent formalism for a wide variety of static 
analysis  which  due  to  the  nature  of  abstract  interpretation  partially 
overlaps with problems which using other means would be deductible 
only using dynamic analysis techniques. It's biggest drawback is that the 
abstract interpretation can be slow, memory demanding and for certain 
languages  the  construction  of  rules  and  transitions  for  the  abstract 
interpreter can be very hard. 

Therefore,  based  on  [Cook08]  the  xIL  has  been  designed  with  the 
abstract  interpretation's  needs  in  mind  to  allow  relatively  simple 
semantics and interpreter construction.

5.1 Basic principles
The basics of abstract interpretation will be demonstrated on a classical 
static analysis problem – the constant propagation23 [Muller05]. At first 
we need to specify the domains for variables. These domains are subsets 
of all possible values the variable may hold selected with respect to the 
problem one wants to solve. These domains must be ordered to form a 
lattice, which for this particular problem is very simple and is shown in 
the following figure.

23The problem is to decide which variables can be replaced with constants, which yields 
much faster and smaller code. 
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In the lattice, the capital T corresponds to any, or unknown value which 
means that the value may be anything from defined range of the type and 
{} represents no value which means that no value has yet been set to the 
variable.  Particular  numbers  corresponds  to  constants  with  the  given 
value.

Illustration 6: Constant Propagation Domain Lattice

When the domain lattice is finished we need to redefine all operations 
and their outcomes to work with the already defined domains. Assuming 
the  simple  programming  language  has  only  three  operators,  = 
(assignment), + (addition) and – (subtraction), their tables are displayed 
below (x and y means any constant values):

= {} x T + {} x T - {} x T

{} ! x T {} ! ! T {} ! ! !

y ! x T y ! x+y T y ! x-y T

T ! x T T ! T T T ! T T

Table 11: Operator tables for constant propagation

The  operator  tables  show  the  output  domains  of  the  operations  (left 
operand in rows, right in columns). Each cell defines the outcome domain 
and  !  denotes  invalid  operation  (the  demonstration  language  is 
dynamically types as is xIL24). Apart from unapproved results it is clearly 
visible  that  assignment  of  constant  and  addition  and subtraction  of  a 
constant are the only operations that result in constant outcome. 

Additional operators including relational operator must be also specified 
in the same fashion. Clearly comparison of two constants can be correctly 
evaluated,  comparison  when  any  of  the  operands  is  in  domain  T  will 
result in either true, or false, i.e. in T (we are treating boolean values as 
integers as does xIL). 

When all domains and operators are defined we can proceed to construct 
the abstract interpreter which is very similar to classic interpreter. There 
are however some significant differences:

24For languages like C/C++ replace ! with T's to obtain correct semantics. 
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1. All operations are performed in already defined abstract domains, 
not the concrete values.

2. Particular code block is executed repeatedly only if its last execution 
changed domain of any variable. 

3. When  two  (or  more)  possible  outcomes  of  a  control  flow  are 
possible, both must be interpreted in parallel (this makes abstract 
interpretation quite demanding).

4. This leads to possible situations where a variable may be in two 
states  at  once.  This  nondeterminism  is  solved  using  the  domain 
lattices. 

5. A notion of reachability, i.e. if during the execution at one point a 
variable can have more values, their upper bound should be used 
instead. 

To show the principle of the abstract interpreter, the following code will 
be examined according to the above defined rules:

1  i=5
2  j=10
3  k=i+j
4  while (i<j) {
5    k=k+i
6    i=i+1
7  }  

Text 22: Constant propagation example

The  process  of  abstract  interpretation  is  illustrated  in  the  following 
figure:

1  i=5                 i=5,j={},k={}
2  j=10                i=5,j=10,k={}
3  k=i+j               i=5,j=10,k=15
4  while (i<j) {      1                1                      T
5    k=k+i             i=5,j=10,k=20   i=5,j=10,k=T (20,26)
6    i=i+1             i=6,j=10,k=20   i=T,j=10,k=T (5,6)
7  }

Text 23: Abstract Interpretation

The  above  example  displays  the  first  stage  of  abstract  interpretation, 
domains (after the interpretation of current line) are shown in the right 
column. After the first iteration of the cycle the domains of  k and  i are 
changed to T (upper bound of first and second time pass). Therefore in 
the third iteration of the cycle the result of the condition can be anything 
(indicated by  domain  T)  and thus the cycle  must  both be  and not  be 
taken.  One branch will  finish immediately  and the other will  pass the 
cycle body once more only to discover that no domains were changed and 
therefore terminates too. 

The final result of (i=T,j=10,k=T) shows that only the variable  j can be 
replaced with constant 10. The optimized code is displayed below:
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1  i=5
3  k=i+10
4  while (i<10) {
5    k=k+i
6    i=i+1
7  }  

Text 24: Sample program after constant propagation

Although the results  shown in this  example can be obtained by using 
much  simpler  techniques  (for  example  counting  writes  to  particular 
variables, variable with only one write of defined value can be replaced 
by  constant),  abstract  interpretation  allows  greater  precision  (limited 
only  by  the  number  and  organization  of  the  domains  theoretically 
converging to full interpretation). The last example in this chapter, while 
escaping the detection by the simpler method will still be updated using 
abstract  interpretation,  while  the  above  presented  method  would 
consider both k and j as true variables. 

1 function test(i) {        i=T,j={},k={} 
2   j=10                     i=T,j=10,k={}
3   k=5                      i=T,j=10,k=5
4   if (i<10) {              0               1
5     k=j-5                                  i=T,j=10,k=5
6   }                        
7   j=k-j                    i=T,j=-5,k=5    i=T,j=-5,k=5
8 }

Text 25: More complicated constant propagation

The  above  example  also  shows  another  property  of  abstract 
interpretation  –  careful  inspection  of  the  results  shows,  that  abstract 
interpretation  actually  simplified  the  code  (all  expressions  modifying 
constants can be left out) during its single pass. 

5.2 xIL Abstract Interpretation
The main disadvantage of abstract interpretation is that it may lead to 
very  complex  structures  and  superlinear  complexity  due  to  its 
nondeterministic  nature.  Therefore  the  algorithm  of  abstract 
interpretation used in Crosscheck has been slightly modified so that it 
still performs correctly in the  context of plagiarism detection yet remains 
linearly complex. 

This speed-up has been achieved by ignoring multiple jump instructions 
in xIL and introducing context-aware operator tables (i.e. operation may 
have different results depending on the interpreter context. The fact that 
multiple instructions are ignored means that at a particular line a jump 
instruction can be followed only once,  thus limiting the passes of  any 
cycle to 2.  Additionally  context  sensitive  operators  allows less  precise 
evaluation25 of statements inside loops to compensate. 

Also xIL interpretation treats inparallel blocks as if they are not really 
performed in parallel, but rather sequentially. This assumption is sound 
provided either of the two following rules are met:

25Less precise in this context means with weaker supremal operator.
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1. The inparallel blocks are mutually exclusive, which means that at 
the same level if one inparallel branch is taken the others are not. 
This means that if the branch contains any assert instructions, they 
will be evaluated to true,

2. or that the branches are data independent, e.g. if one branch reads 
certain  variable,  no  other  branch  can  write  to  it  and  no  two 
branches can write to one variable.

These  rules  are  actually  a  generalization  of  rules  for  safe  parallel 
execution  [Tvrdik00].  It  is  not  surprising  that  xIL  meets  both  of  the 
criteria  (inparallel  blocks  are  either  used  to  code  mutually  exclusive 
branches (if, elif, etc.), or to parallelize code (which can be done only if no 
data  hazards  are  present).  At  the  end  of  each  inparallel  block  a 
supremum of each branch execution is computed for each variable.

The  following  example  shows  simple  xIL  code  with  a  cycle  and  an  if 
clause  to  demonstrate  interpretation  process.  Additionally  the  above 
mentioned operators are updated in a way that when any operation is 
performed  inside  the  loop  which  takes  into  account  any  uncertain 
variable,  it's  result  is  also  uncertain  (i.e.  equal  to  T)  and  that  any 
evaluation which reads and writes into the same variable also sets its 
abstract value to T:

 1 eval v1=1                 (v1=1,v2={})
 2 eval v2=0                 (v1=1,v2=0)
 3 sequence:                                 (v1=T,v2=0)
 4   inparallel:
 5     sequence:
 6       assert v1>2         False           maybe True
 7       eval v2=v1+2                        (v1=T,v2=T)
 8     sequence:
 9       assert v1<=v2       True            maybe True
10       eval v2=0           (v1=1,v2=0)     (v1=T,v2=0)
11   assert v1<10            True            maybe True
12   eval v1=v1+1            (v1=T,v2=0)     (v1=T,v2=T)
13   jump 3                  Taken           not taken

Text 26: xIL Abstract Interpretation Example

Clearly the classic abstract interpretation would have taken the jump at 
line 13 at least once more and it is not hard to imagine code that would 
take much more iterations to process correctly. 
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6 xIL Code Analysis6 xIL Code Analysis

After  the  code  is  transformed  from the  source  language  into  the  xIL 
several  static  analysis  tests  are  performed  on  the  code  in  order  to 
determine its  most important and distinguishing features. While they are 
performed during only one abstract interpretation analysis in Crosscheck, 
they are explained separately for their better understanding. This chapter 
describes the most significant of them. 

6.1 Code Importance
Code  importance  is  a  new  concept  developed  for  Crosscheck  and  is 
defined  as  a  function  that  assigns  to  each  line  of  code  an  integer 
representing the importance of that particular statement. The greater the 
number the greater the importance of the code line.

Although the code importance is computed only for the xIL program, code 
importance of lines in source programs can be easily calculated as sum of 
importances  of  all  xIL  code  lines  which  were  generated  during  the 
translation of the particular source code line. To remain fair proportions 
meta instructions are excluded from the summation as their amount per 
translated  statement  is  arbitrary  and  depends  on  the  statement's 
structure rather than its importance.

Code importance also does not have any upper bound,  only the lower 
bound  is  defined  to  be  0.  Such  score  indicates  that  the  line  can  be 
removed from the code without changing the semantics of the program.

Code importance is computed during the abstract interpretation and does 
not require any domains and operator specifications. It uses the following 
rules to determine the final importance:

Rule Importance Calculation

eval v = ?
exec (?):v

These  instructions  writes  value  to  the 
variable  v.  Every  time  a  variable  is  being 
written  the  location  of  the  instruction  is 
remembered.
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Rule Importance Calculation

eval ? = ?v?
exec(?v?):?
call v(?):?
call ?(?v?):?
assert v ? ?
assert ? ? v

Instruction  which  read  from a  variable  will 
increase the importance of instruction which 
has set the read variable by the number of 
reads.

eval v = ?v?
call v(?):v
call ?(?v?):v
exec (?v?):v

Any  instruction  that  both  reads  and  writes 
into the same variable will also remember the 
last  instruction  to  write  to  the  variable. 
Whenever  its  importance  is  increased,  the 
importance of the original instruction is also 
increased. 

call fnc(?):v
…
return w

In the return and call instructions the address 
representing  last  change  of  variable  w  is 
remembered  also  for  the  variable  v  in  the 
caller's context. 

call fnc(?):? Call of a determined sequence multiplies the 
importance of that sequence by two.

call ?(?):? Call  to  unknown  sequence  (determined  by 
non  constant  variable)  multiplies  the 
importance  of  any  references  sequences  by 
two.

jump forward Jump only

jump backward Each jump (indicating taken cycle) multiplies 
all instructions from that jump target address 
to  the  jump itself  by  two.  If  there  are  any 
function calls or another backward jumps in 
the path, their rules are also applied.

Table 12: Code Importance Analysis Rules

6.2 Code Reachability
Generally  speaking,  any  code  with  importance  equal  to  zero  is  not 
reachable in a sense that such a code is not only unimportant but can be 
omitted completely without any loss of semantic precision. The following 
example shows only a few examples of unreachable statements in Python 
programming language with their brief explanations:

1 def fnc1(x): # this function is never called
2   print “I am function 1”
3   x=x+3 # moreover value from this expression is never used
4
5 z=4 # this expression's value is lost at the next line
6 z=6 # ...without being used previously
7 if (z<0): # and since z is a constant, this would never happen
8   print “z<0”

Text 27: Code Reachability Example
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Additionally, when a function pointer is called, the pointer may either be 
fully specified in which case the respective sequence is called as would 
happen  with  any  immediate  sequence  call,  or  multipliers  of  all 
instructions inside all  referenced sequences are  updated.  This  method 
may result  in slightly higher importance values for pointered function. 
However,  in  classic  programs such functions  are  usually  callbacks,  or 
dynamically selected functions both of which are usually very important 
itself. 

As was already mentioned in previous chapters,  any unreachable code 
automatically classifies the whole submission as plagiarized or at least 
highly suspicious.

6.3 Variable (not constant) Propagation
The  third  most  important  Crosscheck's  analysis  is  the  variable 
propagation. The test is called variable propagation since xIL does not 
have  the  notion  of  constants  (immediates  cannot  be  call  or  exec 
parameters, nor can they be returned from a sequence. They can only be 
evaluated to variables which in turn can be passed).  This system was 
designed to filter any constants (either language specific or literal) into 
variables which can then be analyzed.

Each variable has a constant flag which means that the variable has been 
assigned value only once (and fits in the concrete domain). At the end of 
the analysis  all  constant  variables  are  examined and their  importance 
(importance  of  the  constant  variable  is  clearly  the  importance  of  the 
single line evaluating its value) is summed up according to their values. 
This results in an ordered list of constant values (not variables) and their 
importances,  which  is  stored  together  with  the  submission  for  later 
analysis. 

6.4 Program Flow Analysis
The last  of  the performed analyses  is  the program flow analysis.  This 
analysis  examines  the  program run  (sequence  of  instructions  in  their 
execution order) and based on its statistical properties then creates its 
output string which is forwarded to the comparison engine. 

The  output  string  can  be  modified  using  various  settings  for  better 
performance  and/or  efficiency.  Some  portions  of  this  setup  may  be 
determined  automatically  by  Crosscheck.  This  feature  is  discussed  in 
greater detail in the next chapter. 

In its most common form the output string is a linear representation of 
the  program  flow  of  the  more  important  instructions.  Additionally 
variable names and immediate values are all replaced with single letters 
as are the instructions.
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6.5 Abstract Interpretation Specifications
While the general issues involved with abstract interpretation of xIL used 
in Crosscheck has been stated at the end of previous chapter, this chapter 
introduces their implementations and particular details.

6.5.1 Contexts
The code importance analysis distinguishes two contexts – normal and 
cycle context. Cycle context is active from the time a backward jump is 
taken till that exact jump (instruction address) is reached again. During 
the cycle mode different abstract domain lattices are used and also the 
rules for importance assessment are slightly changed.

Each instruction inside a loop is  flagged so that  the smallest  possible 
importance increase in the future will be 2, not 1 (hence it's importance 
will be twice as high). The lattices used inside the loop are more general 
than the normal ones to compensate for the fact that each jump is taken 
only once during the abstract interpretation.

6.5.2 Abstract Domain Lattices
Although  the  abstract  interpretation  formally  requires  the  variable  to 
have a value from only one lattice, in Crosscheck a value is characterized 
by a vector of abstract values. Each operator is then defined for each of 
the vertices in the value vector.

The first part of the value vector is represented by the following lattice:

The notion of the lattice is only an upgrade of the constant propagation 
lattice presented in the previous chapter. Not only are we interested in 
the  actual  value  of  the  variable  (to  determine  whether  it  should  be 
included  into  the  variable  propagation  analysis),  but  we  also  need  to 
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know as precisely as possible the results of boolean expressions in assert 
instructions to determine the control flow. 

In  the  following  tables  as  well  as  in  the  lattice  above  0  or  False 
corresponds  to  the  known  value  of  0.  x+  corresponds  to  the  known 
positive  integer  value,   x-  is  the  known  negative  value.  +  and  –  are 
unknown  positive  and  negative  values  respectively.  Bold  1 represents 
unknown value different from zero and T represents the universe, i.e. any 
integer value, positive, negative, or even a zero.

Additionally any string is represented as a bold 1 with the exception of an 
empty string which translates to 0.

Abstract operator transitions are defined in the following tables (only the 
interesting operators showing some concepts are illustrated).

Tables for relational operators are defined similarly exploiting the fact 
that positive number is always bigger than negative, etc. 

+ {} 0 x+ + x- - 1 T - {} 0 x+ + x- - 1 T

{} ! ! ! ! ! ! ! ! {} ! ! ! ! ! ! ! !

0 ! 0 x + x - 1 T 0 ! 0 x + x - 1 T

y+ ! y x+y + x+y T T T y+ ! -y x-y T x-y - T T

+ ! + + + T T T T + ! - T T - - T T

y- ! y x+y T x+y - T T y- ! -y x-y + x-y T T T

- ! - T T - T T T - ! + + + T T T T

1 ! 1 T T T T T T 1 ! 1 T T T T T T

T ! T T T T T T T T ! T T T T T T T

* {} 0 x+ + x- - 1 T % {} 0 x+ + x- - 1 T

{} ! ! ! ! ! ! ! ! {} ! ! ! ! ! ! ! !

0 ! 0 0 0 0 0 0 0 0 ! ! ! ! ! ! ! !

y+ ! 0 x*y + x*y - 1 T y+ ! 0 x%y T x%y T T T

+ ! 0 + + - - 1 T + ! 0 T T T T T T

y- ! 0 x*y - x*y + 1 T y- ! 0 x%y T x%y T T T

- ! 0 - - + + 1 T - ! 0 T T T T T T

1 ! 0 1 1 1 1 1 T 1 ! 0 T T T T T T

T ! 0 T T T T T T T ! 0 T T T T T T
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& {} 0 x+ + x- - 1 T | {} 0 x+ + x- - 1 T

{} ! ! ! ! ! ! ! ! {} ! ! ! ! ! ! ! !

0 ! {1} 0 0 0 0 0 0 0 ! 0 {1} {1} {1} {1} {1} T

y+ ! 0 {1} {1} {1} {1} {1} T y+ ! {1} {1} {1} {1} {1} {1} T

+ ! 0 {1} {1} {1} {1} {1} T + ! {1} {1} {1} {1} {1} {1} T

y- ! 0 {1} {1} {1} {1} {1} T y- ! {1} {1} {1} {1} {1} {1} T

- ! 0 {1} {1} {1} {1} {1} T - ! {1} {1} {1} {1} {1} {1} T

1 ! 0 {1} {1} {1} {1} {1} T 1 ! {1} {1} {1} {1} {1} {1} T

T ! 0 T T T T T T T ! T T T T T T T

Table 13: Operator tables

Another  important  part  of  the  domain  vector  is  the  indicator  of  the 
purpose of the variable which is used to determine possible variables for 
the variable propagation analysis. The lattice for this abstract domain has 
states corresponding to the following values:

• Written – variable has been written, but not read yet. This state in 
final analysis indicates unimportant variable which may be left out. 

• Read – This indicates  that the variable has not only been set, but 
also at least one read operation has been performed. Therefore the 
variable has its meaning. At the end of the analysis this state means 
that the variable is a candidate for variable propagation depending 
on its importance.

• ReWritten state denotes variable which has been written and read 
and then written again, but with defined value not dependent on its 
previous value. While this would indicate that the variable might be 
considered for constant propagation (different constants in different 
regions)  for  Crosscheck's  purposes  this  variable  is  treated  as  a 
normal one (usually these variables come from bad programming 
style, not plagiarism techniques)

• Updated variable is variable either depending on another variable 
whose value is unknown, or a variable that has been updated (i.e. 
rewritten with value depending on its previous value (the simplest 
example being the expression v=v+1). This state indicates normal 
variable which should not be considered for variable propagation.

And the illustration of that lattice is in the diagram below:
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Illustration 8: Variable Propagation Domain Lattice

Obviously  the  only  instructions  capable  of  changing  the  value  of  this 
domain  are  evaluations,  calls  and  execs  (all  of  them  writing  to  the 
particular  variable).  The  following  table  shows  the  changes  in  the 
variable  state based on its  previous value and the  type of  instruction 
used:

State eval v=?
call ?(?):v
exec (?):v

eval v=?v?
call v(?):v
call ?(?v?):v
exec (?v?):v

eval ?=?v?
call v(?):?
call ?(?v?):?
exec (?v?):?26

{} W ! !

W RW U R

R RW U R

RW RW U RW

U U U U

T ! ! !

Table 14: Variable propagation rules

Now when all the formal parameters of the abstract interpretation have 
been  specified,  the  following  chapter  demonstrates  the  abstract 
interpretation and analysis on slightly larger code.

26And all other instructions reading from the variable v.
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6.6 Analyses Example
For  better  understanding  the  Crosscheck's  analyses  are  explained  on 
language C, rather than its proprietary xIL language. Documentation on 
the analysis performed on xIL code in greater detain can be found in 
source code documentation.

Also note that the examples given in this chapter does not fully illustrate 
the  potential  of  the  analysis  due  to  their  size  restraints.  The  more 
complex and structured the code is the greter impact the analysis has. 
However even mid-sized C programs are translated into xIL programs 
with  hundreds  of  lines  and  their  demonstration  in  this  report  is 
unfeasible27.

6.6.1 Simple Example
For  the  purposes  of  this  explanation,  consider  the  following  simple  C 
code:

 1 void unnecessaryFunction() {
 2     fprintf("Unnecessary function");
 3 }
 4 void classicFunction() {
 5     fprintf("Classic function");
 6     int x=67;
 7     return x;
 8 }
 9 void functionInCycle(int j) {
10     return j-2;
11 }
12 int main() {
13     int z=classicFunction();
14     if (z<10) {
15         z=z+45;
16     } else {
17         printf("Always executed");
18     }
19     int y=z;
20     int c=0;
21     for (int i=0;i<10;i++) {
22         c=c+functionInCycle(i)+z;
23     }
24     return c;
25 }

Text 28: Analysis Example - C code

In  this  size,  even  to  the  naked  eye  some  of  its  properties  are  easily 
spotted  –  for  instance  the  fact  that  function  unnecessaryFunction()  is 
never used and can then be left out completely, or that the variable y at 
line 19 server no purpose at all. On the other hand, the observation that 
value of the variable x set at line 6 and then passed to z in the main 
function can be replaced with constant is not as trivial. Knowing this, it is 
easy to reason that the positive clause of if statement at line 15 will never 

27These more complex demonstrations can be found on the accompanying CD.
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be executed (if  it  would  be  executed,  z  could  not  be  replaced with a 
constant). 

After the first phase, Crosscheck generates the xIL code, which is shown 
for  future  reference  in  the  text  below  (for  shorter  code  insignificant 
metainstructions have been removed):

 2     jump 37
 3     meta function "unnecessaryFunction"
 5     sequence:
 7         eval V2="Unnecessary function"
 8         meta name "fprintf"
 9         exec (V2)
11     meta function "classicFunction"
13     sequence:
15         eval V4="Classic function"
16         meta name "fprintf"
17         exec (V4)
22         eval V5=67
24         return V5
26     meta function "functionInCycle"
30     sequence(V7):
32         eval V8=V7 2 + 
33         return V8
35     meta function "main"
37     sequence:
42         call 13():V10
43         eval V9=V10
45         eval V11=V9 10 < 
47         inparallel:
48             sequence:
49                 assert V11!=0
52                 eval V9=V9 45 + 
53             sequence:
54                 assert V11==0
57                 eval V13="Always executed"
58                 meta name "printf"
59                 exec (V13)
64         eval V14=V9
69         eval V15=0
76         eval V16=0
77         sequence:
79             eval V17=V16 10 < 
80             assert V17!=0
83             call 30(V16):V18
84             eval V15=V15 V18 +  V9 + 
86             eval V16=V16 1 + 
87             jump 77
89         return V15

Text 29: Translated Analysis Example

Comparison  of  the  translated  code  with  the  original  reveals  that  the 
following  mapping  between  xIL  and  C  variables  is  used  (in  order  of 
appearance):
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C name xIL name

x V5

j V7

z V9

y V14

c V15

i V16

Table 15: C to xIL Variable Names

Other variable indexes in xIL are used for auxiliary variables as xIL is 
unable to call or execute subroutines with immediate parameters. 

6.6.2 Interpretation
When the code is translated it is interpreted. The interpreter produces 
two significant outcomes:

1. Sequence of  instruction  in  the  order  of  their  execution  (abstract 
interpretation does not consider meta instructions to the flow). Each 
of  these  instructions  has  also  associated  its  importance.  And 
obviously all these importances are nonzero positives.

2. Record  of  all  used  variables,  their  abstract  domains  and  their 
importances.

The  interpretation  itself  reveals  some  of  the  properties  of  the  code, 
notably it  discovers that  xIL line 52 (corresponding to C line 15)  will 
never  be  executed.  While  this  example  is  fairly  trivial,  due  to  clever 
domain  allocation  the  interpreter  will  be  able  to  detect  also  more 
complicated  examples  where  the  control  variable  is  not  in  specific 
domain, as shown in the following fragment:

1 def fnc(i):
2     if (i<0):
3         return 10
4     else:
5         return 0
6 i=fnc(13)                    
7 i=i+56
8 if (i<0):
9   print “unreachable code”

Text 30: More complicated dummy code

  

While the abstract interpretation does not recognize uncalled functions in 
itself,  due to  the  fact  that  these  functions  will  not  be  executed,  their 
importance will remain 0 which would make them easily detectable by 
the upcoming analyses.

The abstract interpretation can also deal with function pointers.  If  the 
function pointer value is from a specific domain the appropriate function 
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is called as if the address would be immediate (this is likely to be the 
most prevalent case).  However if  the function pointers are from other 
domains  (+,-,1,T)  their  value  cannot  be  determined.  In  this  case  all 
functions that have ever been referenced in the given context are called 
in parallel, which decreases the importance metrics.

6.6.3 Variable Propagation Analysis
After the abstract interpretation has finished, the variable propagation 
analysis commences. It searches over all variables used and determines 
whether  they  are  candidates  for  constants  (state  R),  or  never  used 
variables (state W). If a variable is never used, it's initializing instruction 
is also removed (i.e.  its importance is set to 0).  Although many of the 
auxiliary variables are also candidates for constants (they were initialized 
and  read  only  once  after  which  they  are  never  used  again),  their 
importance is very low (only one read) and are therefore omitted.

The  following  table  represents  the  states,  abstract  values  and  write 
points of the C variables28 (the write points are in C lines although in 
reality these parameters are in xIL terms). Important lines are described 
in the test as well:

 4 void classicFunction() {
 5     fprintf("Classic function");
 6     int x=67; 
 7     return x; 
 8 }
 9 void functionInCycle(int j) {
10     return j-2;
11 }
12 int main() {
13     int z=classicFunction();
14     if (z<10) {
15         z=z+45;
16     } else {
17         printf("Always executed");
18     }
19     int y=z;
20     int c=0;
21     for (int i=0;i<10;i++) {
22         c=c+functionInCycle(i)
                                 +z;
23     }
24     return c;
25 }

x writePoint to 6
x importance+1

j writePoint to 21
j importance +1

z writePoint to 6, importance +1
z importance +1

y writePoint to 19, z importance+1
c writePoint to 20
i writePoint to 21, importance +4
c writePoint to 22, importance +2
z importance +2 (cycle)

c importance +1

Text 31: Variable Analysis in Code

C name Importance State Value Write Point

x 6 R 67 6

j 2 U + 21

z 4 R 67 6

28The table for xIL would slightly differ due to auxiliary variables and redundant reads.
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C name Importance State Value Write Point

y 0 W 0 19

c 3 U + 22

i 4 U + 21

Table 16: Variable Propagation Analysis Results

This analysis found that variable y is assigned but never used. Therefore 
the importance of line 19 in C (line 64 in xIL) has been set to 0. 

Additionally variables x and z are identified as possible constants (their 
state is R and their value is from a specific domain). The analysis thus 
continues producing the list of possible constants ordered by importance. 
In this simple example the only constant is 67. However one can easily 
imagine more complex output, such as the one shown in the table below:

Value Importance Variables

45 75 V1,V10,V34,V56,V80

2.13 34 V4,V11,V91

128 12 V2

2 6 V45

Table 17: Imaginary Variable Analysis Results

The table lists important constant values that have been found ordered by 
their  importance and accompanies  by  referencing registers.  Therefore 
whenever a variable from the right column is met in the xIL code it can 
be replaced with immediate value in the left column.

6.6.4 Reachability Analysis
After  variable  propagation  helps  identifying  remaining  unreachable  or 
dummy code,  reachability  analysis is  called to find overall  information 
about the submission. Reachability analysis computes the importance of 
source lines and determines larger important parts of the xIL flow code. 
The  reachability  analysis  is  used  by  the  flow  analyzer  to  produce 
optimized string.

These parts can be also used to hash th submissions into a database for 
their future use and effective search in later submissions of  the same 
topic (only pieces of the important code will be searched assuming that 
submission that does not have the important parts is clearly an original 
work)29.

29This feature is not yet implemented and reachability analysis only provides support 
for future improvements.
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Any unreachable code found is reported and implies that the submission 
is flagged as plagiary (even if later comparison would fail to identify the 
original work). 

Crosscheck's visualization of the reachability analysis is displayed below 
(importance shown from white (unreachable) to black (most  important 
code).  While  some  lines  are  simply  not  visited  translated  to  xIL  and 
therefore  cannot  gain any importance (displayed in  white),  others  are 
translated to xIL and yet are not important (displayed in red). The latter 
constitutes the unreachable code: 

 1 void unnecessaryFunction() {
 2     fprintf("Unnecessary function");
 3 }
 4 void classicFunction() { 
 5     fprintf("Classic function");
 6     int x=67;
 7     return x;
 8 }
 9 void functionInCycle(int j) {
10     return j-2;
11 }
12 int main() {
13     int z=classicFunction();
14     if (z<10) {
15         z=z+45;
16     } else {
17         printf("Always executed");
18     }
19     int y=z;
20     int c=0;
21     for (int i=0;i<10;i++) {
22         c=c+functionInCycle(i)+z;
23     }
24     return c;
25 }

Table 18: Reachability Analysis Output

Based on the algorithm for code importance and reachability  it  is  not 
surprising that the most important code has been found on lines 21 and 
22 that are part of  a cycle,  followed by the function functionInCycle() 
which is vital for the cycle's body and the function determining the value 
of the variable z (which has been revealed to be a constant). 

For larger code chunks, the importance of source lines is then copied to 
all  xIL  lines  translated  from  that  particular  line,  because  pure  xIL 
importance tends to be defragmented over the core evaluations.

6.6.5 Program Flow Output
The final analysis is the program flow analysis and consequent output. 
The analysis performs basic statistical examination of the xIL code and its 
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importance  determining  minimal  and  maximal  values,  average,  and 
various percentiles both for the code and for the constants. 

After the analysis the program flow obtained from abstract interpretation 
is the tokenized into a single condensed string which is ready to undergo 
the final comparison part. 

The following rules are used in the tokenization:

Input Output Comments

assert Ar_operator_v

bind Br1_r2

call Caddr_args_results
Caddr(args):results optional

eval E
Ev{operators}
EEv{values}
EEv{expression}

optional consecutive30

optional operators only
optional values only
optional whole expression 
(postfix, infix)

exec Xargs_results
XE(args):results optional

jump J only backward jumps

return Rargs
R(args) optional

sequence S optional

inparallel P optional

variable v
x (constant)
# (constant)

optional 
optional constant value

immediate x
# (value) optional real value

Table 19: Output Flow Rules

And the following figure shows the full output of the presented example 
in 100th and 80th percentiles with constant replacement (beginnings of 
instructions are displayed in bold):

S{Cx:vS{EvxX(v)EvxR(v)}EvvEvvx<P{S{Av!=x}S{Av==xEvxX(v)}}EvxEvxS{Evvx< 
Av!=xCx(v):vS(v){Evvx+R(v)}Evvv+v+Evvx+Jx}S{Evvx<Av!=xCx(v):vS(v){Evvx+ 
R(v)}Evvv+v+Evvx+Jx}R(v)}

Illustration 9: Full Program Flow Output at 100th percentile

{{EvxEvx}EvvEvvx<{{}{Evx}}EvxEvxS{Evvx<Av!=xCx(v):vS(v){Evvx+R(v)}Evvv+v+ 
Evvx+Jx}S{Evvx<Av!=xCx(v):vS(v){Evvx+R(v)}Evvv+v+Evvx+Jx}}

Illustration 10: Full Program Flow Output at 90th percentile

30Consecutive evaluation instructions may be omitted if required.
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7 Comparison7 Comparison

Comparison  is  the  last  stage  of  the  plagiarism  detection.  While  the 
previous phases analyzed only single submission and therefore did nout 
output  any information directly  relevant  for  the  originality  assessment 
(with the exception of  reachability analysis),  the final  comparison only 
compares the submissions amongst themselves on one by one basis. 

During the past I have experimented with various comparator algorithms 
(notably the Running-Karp-Rabin Greedy String Tiling [Wise93] which has 
been used in many other plagiarism detection tools, including the Jplag). 
Unfortunately these algorithms resulted in an extremely high number of 
false positives.

Therefore  the  current  version  of  Crosscheck  uses  another  algorithm 
which is a simple modification of the well known string folding algorithm 
that  has  been  used  in  many  domains  (notably  the  stringology  and 
bioinformatics31).

The  updates  of  this  algorithm ensure  that  Crosscheck  will  be  able  to 
detect  also  more  complex  code  changes  such  as  the  statement 
reordering.

7.1 Basic Algorithm
The extended description of the algorithm can be found in [Kolar04]. In 
general the algorithm computes the best fold of string one (length m) on 
string two (length n) (and vice versa).  This is  obtained using dynamic 
programming and array m*n. This array is initially filled with 0 and rule 
for it's update is:

M x , y=max M x−1, y ,M x , y−1 ,M x−1, y−1match  s1x , s2 y

Where s1 and s2 are the two strings, M is the matrix, max() is a standard 
maximum function and match() is the matching function defined below.

The  advantage  of  the  updated  algorithm  is  that  it  allows  folding  of 
parallel  strings  (these  strings  differ  from normal  strings  so  that  each 
position of the string is either a single character, or a sequence of parallel 

31String folding is used to determine RNA, mRNA or protein folding.
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characters).  Parallel  strings are computed by the comparator from the 
given program flow and known program structure. The match() function 
is defined on these parallel strings in the following way (it is therefore 
only an extension to classic matching function with boolean result):

match a ,b =∣a∩b∣

Where multiple items of the same value are allowed in the intersection 
(intersection  on  aabac  and  dbaa  is  baa  in  no  particular  order).  This 
algorithm can be further enhanced with the idea that when inside parallel 
parts of the string the score is increased for each parallel line separately 
so  that  (aab|bba)  and (aba  bab)  will  not  match  at  all  whereas  in  the 
simple version they are total match.

The output of this comparison is the M matrix with filled values, maximal 
match and computed lengths of  the inputs  s1 and  s2 (their  compared 
lengths are not equal to their nominal lengths as some characters are 
required to code the parallel structure). 

7.1.1 Diagonal Analysis
Although  the  above  presented  algorithm  is  fairly  accurate  for  classic 
submissions,  it  has  one  crucial  disadvantage  as  it  is  not  capable  of 
matching misplaced statements apart from those parallelized before (if 
and  switch  statements  in  general).  Consider  for  example  an  original 
calling two functions A and B in this order and the plagiary that calls 
them in reversed order (assuming this transition is acceptable, i.e. there 
are  no  dependencies  between  these  functions).  This  situation  can  be 
graphically  demonstrated  by  the  folding  of  two  strings, 
aabbbbbbbccccccccaaa and  aaccccccccbbbbbbbaaa.  Note  that  while 
these strings (both have length 21) are composed of equal characters, 
their  c and  b portions  are  misplaced.   Traditional  folding  results  are 
shown in the figure below (the darker the color the higher fold):
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Because the final match is only 14 characters, which is less than 68% of 
the original length such a submission (in larger scale) would hardly be 
reported  as  plagiarized.  To  compensate  for  this  situation,  Crosscheck 
employs another upgrade to the algorithm, the diagonal analysis. 

The matrix M is analyzed once more, to find the diagonals (i.e. lines along 
which  the  s1 and  s2 match).  Vertices  on  these  diagonals  are  then 
replaced  with  the  length  of  the  diagonal  (the  number  of  consecutive 
matches)  or  with  0 none or  only  single  match in  a  row occurs32.  The 
output of this phase is shown in the following illustration:

Illustration 12: Diagonal Analysis of Reordered Statements

The  diagonals  are  then  projected  on  the  x  and  y  axes  in  order  to 
determine the tiling of the strings  using the following rule:

T i=max {t /D i , j∀ j }

Where  Ti is the tiling of  i-th parallel character and  Di,j is the matrix of 
diagonal analysis values. The final match is then calculated as number of 
parallel characters with are tiled (i.e. T i0 ) and the likelihood of that 
match, which is average length of tile used (which is simply the average 
value of Ti). For the presented simple example the match is 100% which is 
excellent result. 

The overall complexity of the algorithm is calculated below:

P=∣s1∣×∣s1∣=m×n=n2
T=2⋅n2 =n2

32Extremely small diagonals are not contributing to the result. 
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7.2 One to One Comparison Strategy
To  determine  plagiarized  submissions  Crosscheck  must  compare  each 
submission  with  all  others  one by  one.  This  is  a  lengthy process  and 
increases the overall time complexity to  n4 . This is the basic idea 
behind  both  human  language  and  programming  language  plagiarism 
comparators. 

However,  the  nature  of  programming  language  submissions  and  their 
cheating is rather different from the natural languages domain where this 
algorithm has been developed.  While  cheating in  natural  languages is 
usually done by paraphrasing other (sometimes not even topically close) 
sources (and paraphrasing many of them to produce the resulting essay), 
this  technique  is  useless  in  computer  languages  due  to  the  following 
facts:

1. Unlike essays, programming assignments are usually well  defined 
with little or no space for creativity and originality.

2. Due to the much more restrictive syntax of programming languages, 
copying  various  algorithms from different  sources  requires  great 
care to put them together in working order to produce the desired 
outcome.

Therefore most of the plagiarism in programming languages is done by 
applying modifications to only one source.  This  enables Crosscheck to 
slightly  decrease  the  number  of  comparisons  required.  When  a 
submission is found to be plagiarized, both the submission and its source 
are marked as plagiarized and none of  them is checked against other 
submissions  in  the  batch.  Additionally  these  submissions  are  moved 
towards the beginning of  a list  from which new possible originals are 
drawn  when  checking  the  other  submissions  (as  it  is  likely  that  one 
source has more then one copies).

The  illustration  below shows the  difference  between  full  and reduced 
search in a set of 30 short programs. Red squares represents plagiarized 
submissions (red square (x,y) means that submission x is plagiarized from 
submission  y)  and  green  shades  reflect  similarity  of  the  submissions 
below the plagiarism threshold, which in this situation has been set to 
90%:
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Using  this  technique  the  number  of  comparisons  required  has  been 
reduced  to  approximately  63%  in  the  test  set.  Another  possible 
enhancement  is  to  assume  that  when  source  A  has  been  suspected 
plagiary when compared with source B, then source B automatically is a 
plagiary too. While this assumption may seem sound at the first glance, 
one may easily imagine a very long and a very short submission with the 
short  submission  being  composed  only  from  parts  of  the  larger 
submission. Clearly the large submission is the original while the smaller 
one is plagiary33. 

33This can be safely assumed because Crosscheck's analyses eliminate redundant and 
unreachable code, therefore the all code in the larger submission has its meaning. 
The real example of such situation are two submissions, a QuickSort algorithm and a 
full data structure of a complex list capable of being sorted using QuickSort 
algorithm.
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8 Evaluation and8 Evaluation and  
ResultsResults

This chapter attempts to evaluate Crosscheck's performance in two ways. 
At  first  the  goals  of  the  project  are  stated  with  following  discussion 
regarding  their  completion.  This  is  demonstrated  on  simple  examples 
targeted only on the single feature. The second part of the chapter then 
deals with a supervised real world example in which a group of students 
was  asked  to  submit  the  same  coursework  with  half  of  them  being 
instructed to cheat.

8.1 Crosscheck's Goals
Crosscheck's goals have been set as follows [Simecek08]:

1. The system must be able to handle variable and function renaming.

2. Capable of  handling changes in function placement in the source 
code.

3. Crosscheck must be able (at least to some extent) identify dummy 
functions and variables (not used and not called ones)

4. The whole system must be easily extensible to allow processing of 
new source languages.

8.1.1 Variable and Function Renaming
Clearly Crosscheck is virtually immune to renaming of any kind because 
no names are preserved for the final comparison. However these can be 
always reconstructed from the xIL code to allow the reporter to pinpoint 
the changes. 

Code altered only by means of renaming will be 100% compatible with 
the original. 
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This  feature is  also fully  supported by all  but the simplest alternative 
tools for plagiarism detection.

8.1.2 Function Placement Changes
Crosscheck is indeed immune even to these modifications as the program 
flow  analysis  groups  the  compared  code  together  by  means  of  the 
execution order, not the order they are defined in the source code. Hence 
the original and the plagiary will be again 100% compatible. 

This  feature  is  also  supported  by  the  alternative  tools,  however  some 
more complex changes in the position may fool the comparators. 

8.1.3 Dummy Functions and Variables
Even dummy functions and dummy variables can hardly fool Crosscheck. 
In  most  circumstances  the  program  flow  and  variable  propagation 
analyses  either  identify  the  unnecessary  statements,  or  they  are  not 
visited  at  all  due  to  the  abstract  interpretation  of  the  source  code. 
Programs trying to  utilize  this  technique would most  likely  end 100% 
compatible in the final comparison. 

This is the first feature possible due to Crosscheck's various analyses of 
the  intermediate  code  and  as  such  is  not  available  in  other  tools  for 
plagiarism detection.

8.1.4 Extensibility
Crosscheck's excellency in the above mentioned areas is possible partially 
as a trade-off in its extensibility. While adding a new language to other 
plagiarism detection tools (such as Jplag) mostly consists only of writing a 
relatively  simple  parser  for  that  language,  adding  new  language  to 
Crosscheck is much more complicated. 

To add a new language a new language parser and compiler to xIL must 
be developed. When the new language can be translated to the xIL all 
other  Crosscheck's  parts  can  remain  the  same.  Additionally  the 
complexity  of  the  addition  of  a  new language greatly  depends  on the 
language itself. While the extension for Java language would be one of the 
easier  ones,  addition  of  fully  compatible  C++  compiler  to  xIL  is 
enormously  complex  task.  On  the  other  hand  the  existence  of  the 
intermediate language allows Crosscheck to possibly check for plagiarism 
even across supported programming languages.

Aware  of  the  problems  associated  with  its  extensions,  Crosscheck 
provides large SDK with many useful functions and template classes for 
easier  development  of  parsers  and  compilers  to  xIL.  These  are 
documented in the source code documentation.

8.1.5 Additional Features
The  powerful  abstract  interpretation  in  the  heart  of  Crosscheck's 
algorithm gives it additional resistance against another and even more 
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advanced plagiarism techniques. In general while some of these features 
may be supported in other programs,  Crosscheck's  capabilities  in  this 
areas are orders of magnitude greater.

Variable Propagation

Crosscheck is to some extent able to detect variables that are used only 
as  constants  and  replace  them  with  their  immediate  values.  These 
important constant values can be also ordered by their importance and 
added to the submission report. This allows to check not only whether 
source code has been plagiarized but also if the important values are not 
stolen,  which  may  be  desirable  for  tasks  such  as  genetic  algorithms 
where  careful  setup  of  the  important  probabilities  is  crucial  to  the 
algorithm's effectiveness.

Clever Dummy Code Insertion

Consider the following example:

1 int cleverFunction(int x) { 
2   float z=0.5;
3   z=z**x;
4   if (z<0) {
5     // Large dummy code here
6   }
7   return z;
8 }

Text 32: Clever Dummy Code

Although it is not apparent, Crosscheck will correctly identify the dummy 
code at line 5 as unreachable and would not include it in the program 
flow output (although we know nothing about the variable x, we know 
that z is positive and positive number to the power of any other number is 
always positive, therefore cannot be smaller than zero). This code would 
be 100% similar to its original without the dummy code.

No other plagiarism detection tool is capable of such detection and most 
of  them would  be  fooled  by  largely  different  submission  size  and  its 
fragmentation due to such code pieces.

Statement Reordering

Statement  reoredering  (e.g.  changing  positions  of  statements  inside 
functions) is one of the most advanced plagiarism techniques. Crosscheck 
is  able  to  battle  this  technique  on  two  fronts  –  using  the  xIL 
parallelization with inparallel  instructions and diagonal analysis during 
the final comparison. 

While  string  tiling  algorithms  in  other  tools  can  also  correct  the 
reordering, Crosscheck's algorithms work instruction wise which forbids 
tiles to span over instructions which are not covered totally. 
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8.2 Coursework analysis
The following observation was taken on high school  students  learning 
C/C++ for one year. Due to the fact that they are learning the language 
voluntarily  to  prepare  themselves  for  higher  education  they  can  be 
roughly compared to freshmen university students.

8.2.1 Task Specification
A smaller task of finding way out of the maze has been selected to test 
Crosscheck's possibilities because smaller programs poses theoretically 
higher risks for the abstract interpretation as even small changes in the 
program flow would result in a significant percentage of altered code. 

Precise definition of the problem which was also given to the students is 
displayed below:

Create a program that will solve the maze problem, i.e. determine if 
there is a path from initial position to the gate of the labyrinth. The 
maze can be of any size and is represented by integers, walls are 
denoted by constant 100. The maze will always be bordered by walls, 
therefore you do not need to check constraints during the algorithm.

The  following  functions  (implemented  in  maze.h  and  maze.cpp)  were 
available to the students:

int**  maze_getLabyringth(int  size) which  returns  the  generated 
maze problem.

int maze_coordinateX() and  int maze_coordinateY() which returns 
the x and y coordinates of the actual position in the maze.

bool maze_walk(int dx,int dy) that performs the move in direction 
specified by dx and dy (only moves orthogonal to main axes are allowed 
and the person can move only one piece at a time). This function returns 
true if the move was successful and false if there is wall in the desired 
direction.

And finally bool maze_finished() returns true if the labyrinth gate has 
been reached, otherwise return false.

The students were instructed to either develop an original solution, or 
attempt  to  copy  already  existing  solution  in  a  way  that  would  be 
undetectable  by  the  automated  detector.  They  were  not  told  about 
Crosscheck's  internal mechanisms, but they knew they would be facing 
an automated system, not a human.

Additionally  I  have  added  another  submission  to  the  repository.  This 
contained  insertion  and  selection  sorts,  i.e.  a  completely  different 
program of roughly the same size. 

8.2.2 Preliminary Analysis
After the submissions have been collected they were manually reviewed 
in order to identify their similarities which was possible due to their small 
amount and sizes. This analysis is summarized in the following table and 
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determines  the  base  of  the  supervised  analysis  of  Crosscheck's 
capabilities:

ID Copies Comments

1 6, 10 iterative modification 1

2 original work

3 8 recursive

4 sorts

5 9 iterative modification 2

6 1, 10 iterative modification 1

7 original work

8 3 recursive modification

9 5 iterative modification 2

10 1, 6 iterative modification 1

Table 20: Preliminary Analysis of the Submissions

Analysis  of  the  submitted  sources  also  revealed  that  most  of  the 
techniques very fairly simple and mostly limited to simple refactoring by 
the means of variable and function renamings. Some students altered, 
added, or stripped comments and from time to time more clever methods 
such as statement reordering have been used. 

The  most  advanced  form  of  plagiarism  discovered  was  insertion  of 
dummy code into active procedures (submission 6) and function inlining 
or  extracting  found  in  submission  10.  Examples  of  both  are  provided 
below:

41         case 0:
42           if (canWalkLeft(maze,x,y)) {
43               maze_walk(-1,0);
44               maze[x][y]++;
45               break;
46           }
47           if (false) {
48              maze=0;
49              maze+=1;
50              printf("Posunuju se na dalsi krok.") ;
51           }

Text 33: Dummy Code Insertion into the tested submission
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10 case 0:
11  if(maze[x-1][y]!=100) {
13       maze_walk(-1,0);
14       maze[x][y]++;
15       break;
16   }

 6 bool canWalkLeft(int **maze,int x,int y){
 7     if (maze[x-1][y]==100) {
 8         return true;
 9     } else {
10        return false;
11    }
12 }
47 case 0:
48   if (canWalkLeft(maze,x,y)) {
49     maze_walk(-1,0);
50     maze[x][y]++;
51     break;
52   }

Text 34: Inlining or Extracting Functions

Notably all three submissions are from the same source which is clearly 
visible  even  from  their  fragments  already  presented.  However  their 
detection by classical techniques is very unlikely due to the fact that each 
of these adds or removes relative large amounts of code (either used or 
unused one).

8.2.3 Crosscheck's Results
Based  on  my  experiences  with  former  versions  of  Crosscheck  I  have 
anticipated  relatively  large  number  of  false  positives  and  thus  the 
similarity ratio at which the submission is considered to be plagiarized 
and should be reported has been set to 90%. All other settings has been 
left  at their default  values (this means minimal code importance of  at 
least 2, constants replaced by their values, etc). 

The best  achieved results  within  this  setup was  either  full,  or  partial 
symmetric  algorithm  (e.g.  each  two  submissions  are  tested  and  the 
similarity  between  a  and  b  is  the  maximum  of  their  respective 
similarities). 

At first the final comparison algorithm, the diagonal analysis was tested 
using its visualizations. Surprisingly the differences between match and 
no match are visible even to the naked eye, as shown in the following 
figure (mismatching pair at the top, matching below). 

The are followed by the final table produced by the comparator. This table 
shows percentages of similarity for each pair of submissions. This value is 
also visualized using green shades for normal values and red shades for 
suspected plagiaries). A submission is reported as plagiarized if it has at 
least  one  red  square  either  in  a  row,  or  in  a  column.  Grey  squares 
represent skipped comparisons, in this case (fully symmetric) it's only the 
main diagonal. 
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Illustration 14: Mismatching submissions (1,9)

Illustration 15: Matching submissions (1,6)



Illustration 16: Final Results

The final results show a remarkably well  outcome of the analysis.  The 
original  submission  #7  was  indeed  marked  as  original,  three  major 
clusters were also correctly marked (submissions  {1,6,10} {3,8} {5,9}) 
and the submission #4 was clearly marked as unfit (notice the very low 
similarity ratios with other submissions). Due to the redundant code in 
submission #6 Crosscheck can even determine that this is likely not the 
original, a feature unique among other plagiarism detectors.

On  the  negative  side,  the  Crosscheck  seems  to  identified  two  false 
positives, namely the similarity between submissions 2 and 3 (92%) and 
between submissions 3 and 6 (91%).

8.2.4 False Positives and Their Explanation
To explain the  found false positives,  we will  look at  the  asymmetrical 
version of  the algorithm. This easily clarifies the second case because 
while submission 3 is very similar to the submission 6 (91%), submission 
6 cannot be less similar to #3 than it is reported at 17%. Such varying 
results  mean  the  only  thing  –  submission  3  is  much  smaller  than 
submission number 6 (remember 3 and 8 are recursive) and because it 
has many smaller parts similar with #6 is is indeed reported to be similar. 
On  the  other  hand,  because  #6  is  way  too  large  to  be  a  copy  of 
submission number 3 and due to the fact that the matching sequences are 
very small in length compared to the overall length of the submission, its 
similarity result is almost opposite.

The second false positive is more interesting as the respective similarity 
is 60%. Although it is not as high as the other 92% it is high enough not 
to be dismissed by varying sizes. Closer look on the submissions' source 
codes reveals that both are in fact recursive and although they seem to 
be different, they share very similar portions, notably the recursion itself, 
as shown in the following text (submission 2 on left):
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33 return (walk(-1,0) || walk(0,-1)
     || walk(1,0) || walk(0,1));

 8 if(solve(maze,1,0)) return true;
 9 if(solve(maze,-1,0)) return true;
10 if(solve(maze,0,-1)) return true;
11 if(solve(maze,0,1)) return true;

Text 35: Recursive false positive

 

8.2.5 Possible Improvements
Although this situation is theoretically one of the  hardest tasks due to the 
extremely small programs and very precisely specified task and is thus 
unlikely to occur in large submissions (where the same effort was taken 
to cheat) it gives valuable hints for possible future improvements.

Notably the asymmetrical nature of the comparison should be exploited 
so  that  only  one  value  (that  equally  reflects  both  similarities)  will  be 
issued for the pair. However to determine the exact way to achieve this 
on  unsupervised  data  would  certainly  require  much  more  extensive 
testing.
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9 Conclusion9 Conclusion

Crosscheck implements in many ways novel approach to the plagiarism 
detection in computer science programming courseworks. And while it 
has  definitely  proven  that  its  path  is  worth  exploring,  as  every  new 
technology, Crosscheck is not error-free. This chapter attempts to assess 
Crosscheck's current state and its possible future development.

9.1 Future Developlment
In the foreseeable future, Crosscheck might additionally benefit from the 
following upgrades:

• Crosscheck would definitely benefit from more extensive testing on 
larger data sets (preferably of supervised data) and improvements to 
its xIL translator to fully meet standards of at least C/C++ and Java 
languages. 

• better  reporters  (classes  visualizing  the  analysis  results)  to  cope 
with leading commercial products, such as turnitin.com

• while Python has proven to be excellent choice for the system itself 
and allowed fast development and prototyping, its drawback is lack 
of  speed.  Therefore  reimplementation  of  bottlenecks  (one by  one 
comparison,  abstract  interpretation)  into  C/C++  might  greatly 
speed up the whole application

• addition of other languages (Java, complete C++, Python, Pascal)

• integration into e-learning suite34 

• as  mentioned  above  also  more  extensive  testing  and  evaluation 
which should render new improvements to the existing algorithms in 
order  to  soundly  decrease  the  occurrence  of  false  positives. 
Additionally Crosscheck should also be benchmarked against other 
plagiarism detectors so that it's accuracy can be compared. 

• insertion  of  new  stage  that  would  utilize  the  important  code 
segments to faster search of multiple submissions in a database to 

34This project is jointly developed by Tomas Nykodym and me.
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determine  most  likely  candidates  for  the  one  to  one  lengthy 
comparison.

9.2 Comments
Due to huge problems with xIL translators, the initially favored idea of 
unique intermediate language might be cost ineffective,  or xIL can be 
disassembled from another language (Micrsosoft Intermediate Language 
in  .NET,  or  assembler  for  gnu compiler).  Although  this  change  would 
require significant modifications of the current code and limit the set of 
possible  languages  to  those  supported  by  the  used  suite,  only  one 
translator  to  xIL  would immediately  support  most  of  today's  practical 
languages. 

It might also be possible to change Crosscheck to be less accurate in the 
abstract interpretation as the loss of some of its most advanced functions 
seems  of  smaller  practical  value  (such  modifications  would  usually 
require  fairly  complicated  cheating).  This  would  in  turn  simplify  the 
design  of  the  translator  and  ease  the  Crosscheck's  extensibility  while 
retaining some of its advanced functions. 

Personally, I believe that this is the course of actions that could improve 
Crosscheck and make it more competitive with other plagiarism detection 
tools while retaining most of its unique features.
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Appendix AAppendix A
Attached CDAttached CD

The above illustration represents the directory structure of the attached 
CD. Entire source code, reports and other related media are stored in the 
folder  Crosscheck,  while a backup copy is  stored in  Backup.  All  paths 
from now are relative to the /Crosscheck directory:

Crosscheck's  source  code  is  stored  in  the  folder  /crosscheck and  its 
subfolders  for  each  stage  -  /crosscheck/il  for  intermediate  language 
parsers  and  translators,  /crosscheck/reports for  reporters, 
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/crosscheck/comparison for the comparators and /crosscheck/analysis for 
the various analyzers.

Full  source  code  documentation  in  HTML  format  generated  by  the 
Doxygen is located in /doxygen/html.

/evaluation contains  all  data  relevant  to  the  Crosscheck's  evaluation 
presented in this thesis. /evaluation/sources contains the source codes of 
the  checked  submissions  and  other  subfolders  contain  full  analysis 
reports of the particular setup.

Finally  the  /reports folder  contains  this  thesis  (in  /reports/thesis)  and 
Crosscheck's presentation (in /reports/presentation) in OpenOffice, Adobe 
PDF and postscript formats. 
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Appendix BAppendix B
Crosscheck's BriefCrosscheck's Brief  

TutorialTutorial

Although Crosscheck is mainly intended as a Python library for the web 
based e-learning framework, a simple command line interface has been 
developed for the purposes of its evaluation.

System Requirements
Because Crosscheck is written entirely in Python programming language, 
it's requirements are only a few:

• Python SDK, should be compatible with any 2.x distribution

• Python Imaging Library for graphic outputs

Crosscheck has been tested with the following configuration:

• OpenSuSE 11.1 (x86_64)

• Python 2.6 (gcc 4.3.2)

• Python Imaging Library 1.1.6

Command Line Parameters
Crosscheck command line parameters are very simple. First parameter 
must be the prefix for output files. All remaining parameters are locations 
of the submissions to be checked. At least two files must be specified for 
successful start. 
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The following command35:

user@machine > crosscheck.py testPrefix s1.c s2.c s3.c

Evaluates the files s1 through s3.c and produces the following files:

• testPrefix_1_to_2.png,  testPrefix_1_to_3.png,  testPrefix_2_to_3.png 
which contains the graphical depiction of the diagonal analysis

• testPrefix_table.html that contains the final comparison table.

Crosscheck also contains numerous additional features such as advanced 
logging and configuration system. Documentation to these parts can be 
found on the accompanying CD in source code documentation.

File  demo.py contains  already  configured  script  that  will  produce  the 
results of the analysis performed in chapter 8.2 of this document.

35use python crosscheck.py on Microsoft Windows machines.
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