
České vysoké učení technické
Fakulta elektrotechnická

Diplomová práce

Systém ověření pravosti
Originality Checking System

Petr Máj

Vedoucí práce: Ing. Ivan Šimeček, PhD

Studijní program: Elektrotechnika a Informatika strukturovaný
magisterský

Obor: Systémové Programování

květen 2009

Prohlášení

Prohlašuji, že jsem svou magisterskou práci napsal
samostatně a použil jsem pouze podklady uvedené v
přiloženém seznamu.

Nemám závažný důvod proti užití tohoto školního díla ve
smyslu §60 Zákona č. 121/1200 Sb. o právu autorském, o
právech souvisejích s právem autorským a o změně
některých zákonů (autorský zákon).

V Praze dne 15. května 2009

….....................................

- iii -

- iv -

Acknowledgments

Ing. Ivan Šimeček, PhD, Czech Technical University

dr Henk Muller, University of Brisol

- v -

- vi -

License (BSD License)

Copyright (c) 2009, Petr Máj
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
• Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.
• Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

• Neither the name of the Crosscheck nor the names of its contributors
may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY PETR MAJ ''AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
PETR MAJ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

- vii -

- viii -

Abstract

This thesis presents Crosscheck, in many ways a novel
approach to the source code originality problem. Apart
from already available tools Crosscheck utilizes the
abstract interpretation and static analysis to combat
plagiarized code. It successfully demonstrates both the
benefits and drawbacks of this technology and gives a
direction to future research into this area.

Abstrakt

Tato diplomová práce popisuje Crosscheck, který je v
mnoha směrech zcela novým přístupem k řešení problému
ověření originality kódu. Narozdíl od momentálně
dostupných systémů, Crosscheck používá abstraktní
interpretaci a statickou analýzu k úspěšnému odhalení
padělaného zdrojového kódu, úspěšně demonstruje jak
výhody tak nevýhody této technologie a otevírá možné
cesty pro další výzkum v této oblasti.

Keywords

Plagiarism detection, abstract interpretation, static
analysis

- ix -

- x -

Table of ContentsTable of Contents

Illustration Index..xiv
Index of Tables..xv
Index of Source Examples..xvi

 1 Introduction...1
 1.1 Document Organization..1

 1.1.1 Typographic conventions...1
 1.2 Motivation of the Project...2

 1.2.1 Introduction to Source Code Plagiarism..3

 2 Background Research...5
 2.1 Source Code Plagiarism Detection Tools...5

 2.1.1 First Generation Tools..6
 2.1.2 Second Generation Tools..8

Jplag...8
Xplag..10
MOSS...11
Other tools...11

 2.2 Code Cloning Detection...11
CCFinder..12

 2.3 Plagiarism in Human Languages...12
Turnitin..13

 2.4 Conclusion...13

 3 Solution Overview...15
 3.1 Crosscheck's Stages..15

 4 Intermediate Language..17
 4.1 Crosscheck IL Architecture...18

 4.1.1 Memory model...19
Variables..20

 4.1.2 xIL Elements..20
Keywords..20
Identifiers...20
Immediates..21
Operators...21
Comments..22

 4.1.3 Expressions in xIL..22
 4.1.4 Instructions..22

Assert...22

- xi -

Bind..23
Call...23
Eval..23
Exec..24
Inparallel..24
Jump...24
Return..24
Sequence ...25

 4.1.5 xIL Metainstructions..25
Comment..25
Control...26
Function...28
Language...28
Line..28
Name..29
Source..29
Type..30

 4.2 Expressiveness of xIL and input languages...30
 4.2.1 Turing Completeness of xIL...31
 4.2.2 Semantic Preservation in xIL...31

 4.3 Translation from C++...32
 4.3.1 Preprocessor..32
 4.3.2 Namespaces...32
 4.3.3 Variables..33

Unions..33
Enumerations...33
Strings..33

 4.3.4 Pointers and References..33
Operator New..34

 4.3.5 Function calls...34
 4.3.6 Structures and Objects..34
 4.3.7 Control Structures...35

If and If-Else Clauses...35
Switch Clause..36
For and While Cycles...37

 4.3.8 Expressions..38

 5 Abstract Interpretation..43
 5.1 Basic principles...43
 5.2 xIL Abstract Interpretation...46

 6 xIL Code Analysis..49
 6.1 Code Importance...49
 6.2 Code Reachability...50
 6.3 Variable (not constant) Propagation..51
 6.4 Program Flow Analysis..51
 6.5 Abstract Interpretation Specifications..52

 6.5.1 Contexts...52
 6.5.2 Abstract Domain Lattices...52

 6.6 Analyses Example..56
 6.6.1 Simple Example...56
 6.6.2 Interpretation...58
 6.6.3 Variable Propagation Analysis..59
 6.6.4 Reachability Analysis...60
 6.6.5 Program Flow Output...61

 7 Comparison...63
 7.1 Basic Algorithm...63

- xii -

 7.1.1 Diagonal Analysis...64
 7.2 One to One Comparison Strategy..66

 8 Evaluation and Results...69
 8.1 Crosscheck's Goals..69

 8.1.1 Variable and Function Renaming...69
 8.1.2 Function Placement Changes...70
 8.1.3 Dummy Functions and Variables..70
 8.1.4 Extensibility...70
 8.1.5 Additional Features..70

Variable Propagation...71
Clever Dummy Code Insertion..71
Statement Reordering...71

 8.2 Coursework analysis...72
 8.2.1 Task Specification..72
 8.2.2 Preliminary Analysis..72
 8.2.3 Crosscheck's Results..74
 8.2.4 False Positives and Their Explanation..76
 8.2.5 Possible Improvements..77

 9 Conclusion...79
 9.1 Future Developlment...79
 9.2 Comments...80

 References..81

 Appendix A
Attached CD..85

 Appendix B
Crosscheck's Brief Tutorial...87

 System Requirements...87
 Command Line Parameters...87

- xiii -

Illustration IndexIllustration Index

Illustration 1: Alignment of the multiplication source and plagiary(1)..................9
Illustration 2: String tiling of example with advanced alterations.......................10
Illustration 3: Crosscheck's Architecture Overview..16
Illustration 4: Expression tree..39
Illustration 5: Multiple trees from the single expression......................................41
Illustration 6: Constant Propagation Domain Lattice...44
Illustration 7: Abstract Domains Lattice..52
Illustration 8: Variable Propagation Domain Lattice...55
Illustration 9: Full Program Flow Output at 100th percentile..............................62
Illustration 10: Full Program Flow Output at 90th percentile..............................62
Illustration 11: Reordered Code Match...64
Illustration 12: Diagonal Analysis of Reordered Statements................................65
Illustration 13: Full and Reduced Comparison Visualization................................67
Illustration 14: Mismatching submissions (1,9)..75
Illustration 15: Matching submissions (1,6)..75
Illustration 16: Final Results..76
Illustration 17: CD Contents...85

- xiv -

Index of TablesIndex of Tables

Table 1: Levels of program modifications..3
Table 2: Generations of source code plagiarism detectors.....................................6
Table 3: Distance of identifier renaming example...7
Table 4: xIL Keywords..20
Table 5: Precedence of Operators in xIL...21
Table 6: meta control Standardized Values...27
Table 7: xIL Language Values Recognized by Crosscheck28
Table 8: meta type Families..30
Table 9: Pointer Operations in xIL...33
Table 10: Expression translation rules...40
Table 11: Operator tables for constant propagation...44
Table 12: Code Importance Analysis Rules..50
Table 13: Operator tables...54
Table 14: Variable propagation rules...55
Table 15: C to xIL Variable Names...58
Table 16: Variable Propagation Analysis Results..60
Table 17: Imaginary Variable Analysis Results..60
Table 18: Reachability Analysis Output...61
Table 19: Output Flow Rules..62
Table 20: Preliminary Analysis of the Submissions...73

- xv -

Index of Source ExamplesIndex of Source Examples

Text 1: Attribute Counting Example using identifier renaming..............................7
Text 2: Multiplication with line boundaries changed..7
Text 3: Multiplication code altered using renaming and dummy code insertion...9
Text 4: Token sequences according to JPlag..9
Text 5: Multiplication - changes to control structure..10
Text 6: Recursive and Iterative version of displayDigits()....................................18
Text 7: meta comment Instruction Example..26
Text 8: meta control Example with two different cycles.......................................26
Text 9: meta function Instruction example..28
Text 10: meta name Example with external calls..29
Text 11: meta line and meta source Instructions Example...................................29
Text 12: Counter Machine Instructions and their xIL equivalents.......................31
Text 13: Function and function call example...34
Text 14: Classes and Inheritance in xIL...35
Text 15: Translation of the if-else clause...36
Text 16: Switch clause translation...37
Text 17: For cycle translation into xIL...37
Text 18: While cycle in xIL...37
Text 19: Break and Continue statements...38
Text 20: Simple expression example..39
Text 21: Translated expression in xIL..41
Text 22: Constant propagation example..45
Text 23: Abstract Interpretation..45
Text 24: Sample program after constant propagation..46
Text 25: More complicated constant propagation...46
Text 26: xIL Abstract Interpretation Example...47
Text 27: Code Reachability Example..50
Text 28: Analysis Example - C code...56
Text 29: Translated Analysis Example...57
Text 30: More complicated dummy code...58
Text 31: Variable Analysis in Code...59
Text 32: Clever Dummy Code...71
Text 33: Dummy Code Insertion into the tested submission................................73
Text 34: Inlining or Extracting Functions..74
Text 35: Recursive false positive..77

- xvi -

1 Introduction1 Introduction

The topic of this thesis was to create a tool capable of detecting
plagiarized source code fragments especially in the academic domain. To
fulfill this goal I have created Crosscheck, the system that is described in
greater detail in the following chapters.

1.1 Document Organization
This thesis contains the complete reference to the Crosscheck, notably
the explanation of its main design principles. In the first chapter, the
structure of the document is presented together with the used
typographic conventions which is then followed by a brief motivation into
this research area.

Second chapter gives a background research on the currently available
tools for the same purpose with their techniques explained as well as an
overview of tools sharing remarkable similarities with either the area of
plagiarism detection or another Crosscheck's properties.

Third chapter deals with the explanation of the basic idea behind the
Crosscheck functionality. Key aspects of the Crosscheck detecting
algorithm are then described in greater detail in the subsequent
chapters.

Chapters four to seven describe the key principles of the Crosscheck's
detection process in their natural order.

Chapter eight evaluates Crosscheck's results and discusses the
completion of its goals. The last chapter concludes the thesis and
summarizes the work done, and also gives a reasoning about possible
future improvements of Crosscheck.

This document also contains several appendices, notably Appendix A
describing the contents of the attached CD and Appendix B with brief
user tutorial of the whole system.

1.1.1 Typographic conventions
The following conventions are used to simplify reading of the text:

- 1 -

• normal text is typed with a book font

• new items are highlighted in italics when they are firstly introduced

• alteration rules and examples are printed on gray background with
black border:

This is an example how examples are typed.

• identifiers, keywords and other language elements are typed in
monospace font

• source code of any non Crosscheck language is printed with line
numbers:

1 def exampleCode():

2 print "I am a code example"

3

4 exampleCode()

1.2 Motivation of the Project
In over forty years since the first statistics about cheating of university
students have appeared, the plagiarism in coursework submissions has
grown to one of the biggest educational issues of today's universities.

It is obvious that this problem is not restricted to the academe but
presents also a great danger to the whole society, because if students
cheat their work in schools they are likely to become incompetent
graduates who may fail in their jobs causing damage not only to their
employer but also to the potential customer (when the failure is not
revealed) and even to the reputation of their university. Moreover
cheating also harms the student as he/she is loosing a chance to learn
properly thus being unprepared and uncompetitive for future
employment. It also harms other students as it constitutes unfair
environment [Dick02].

In the recent years the rise of Internet and digital information sharing
makes it even easier for students to plagiarize. Previously seen as only
lack of original thought, cheating can now be done using the “copy-paste”
methods and thus also significantly decreasing the time spent on the
particular assignment. Internet searching engines can simplify this task
even more by locating the appropriate resources by only a few keywords
in virtually no time. There are even specialized web pages - the so called
essay mills - offering complete essays and homeworks on common topics
for download. Naturally with cheating this easy it is not surprising that
recent studies, such as [Sheard02] revealed an overwhelming majority of
students (96%) used cheating at least once during their academic career.

Although the answer to the question why students cheat at the first place
should not be covered by this thesis (further information can be found in
[Dick02] and others), it is worth mentioning at least the basic factors
influencing student's decision whether to cheat or not. These are
[Dick02]:

- 2 -

• technology

• societal context

• demographic factors

• situational context

• and the personal domain.

Although the prevention, detection and response to cheating in the Czech
Republic (and other eastern Europe countries [Grimes04]) is generally
milder than in their western counterparts, especially in the English
speaking world, the seriousness of such academic dishonesty is well
appreciated and appropriate policies are being developed. Such violation
at the Czech Technical University usually means a loss of the particular
course1.

Cheating is also not unique to the computer science domain or even
engineering in general and sophisticated systems have been developed to
deal with the plagiarism of written essays (usually in English), such as the
turnitin.com which is described in one of the following chapters.

1.2.1 Introduction to Source Code Plagiarism
Where the main (and the only interesting) tool for essay plagiarism is the
paraphrasing without proper citations, the situation in the field of
programming languages cheating techniques is much more systematized,
mostly due to better formal structure of computer languages.

Various source code plagiarism techniques have been described and
categorized by [Faidhi87] to the six levels described in table 1.

Level Code Alteration Method

0 Original source code

1 Comments and whitespace characters changed

2 Identifier and function names changed

3 Variable positions changed

4 Combinations of functions changed

5 Program statements changed

6 Control logic changed

Table 1: Levels of program modifications

The higher the level the more complex the modifications are and the
more time consuming the plagiarism is. Generally speaking the detection
of cheated sources where modifications of level four or higher were used
is extremely hard. On the other hand such alteration usually requires
good understanding of the problem and may be even more time

1 According to the rules a subject may be attempted only twice. If the second attempt is
unsuccessful, student is automatically expelled.

- 3 -

consuming than writing the coursework from the scratch. Therefore it is
questionable whether such actions still qualify as cheating and these
must be dealt with accordingly to the properties of the particular
assignment.

The above presented table can be updated to reflect also multi-paradigm
programming languages and even cheating across programming
languages. The difficulty with these levels is that they do not fit into the
hierarchy because they heavily depend on the coursework topic,
paradigms used and selected languages. While it may be extremely easy
to detect plagiarized C program submitted as C++ application, the same
decision with languages such as C++ and Prolog is unsolvable for most
cases2.

Another important factor of source code plagiarism detection is the
nature of assignments being checked. Especially in the undergraduate
courses, where the majority of cheating is done, due to larger amounts of
enrolled students assignments are usually the same for the whole class,
as it is unfeasible to prepare unique assignment for each student.
Additionally if the whole class receives the same assignment, the
submissions could then be compared against each other (for instance in
terms of performance) to produce fair and accurate marking.

Although the set of such assignments is vast, most of them are targeted
to at least one of the following purposes:

• to demonstrate the knowledge of a particular programming
language. These assignments usually take form of a simple
algorithmic problem that student usually knows how to solve, the
real task is to write the solution in a given programming language

• to demonstrate the knowledge of a particular algorithm domain,
which usually means a task which requires students to slightly
modify (and/or merge) some of already known algorithms in order to
fit them for a particular (usually not trivial) problem.

• performance based assignments. Here students have to understand
in great detail some problem and then come up with a solution that
is optimal in previously selected characteristics3.

• optimization based assignments. Although these are very similar to
the performance based tests mentioned above, the biggest
difference is that these usually do not require program
modifications. Rather than that simple local tuning of program's
features should be enough to accomplish the goal. For instance in
evolutionary computing depending on the operators' probabilities
very different results can be obtained. And finding the right
probabilities is one example of an optimization based coursework.

From the plagiarism detection's perspective all of the above mentioned
assignment types share some trivial similarities, but they are very
different with respect to their susceptibility to higher level code
alterations, an issue that will be described in greater detail in latter
chapters.

2 Putting apart the feasibility and efficiency of such task.
3 For example performance oriented task is to create an assembler program for matrix

multiplication optimized for processor cycles required to its completion. This task is
given each year to the students of X36APS class at the FEE CTU.

- 4 -

2 Background2 Background
ResearchResearch

With plagiarism being such an important problem it is not surprising that
Crosscheck is definitely not the first and neither the last tool to detect
cheated submissions. The major already existing similar tools are briefly
reviewed in this chapter with respect to their relevance for the
Crosscheck's intended purpose.

As the topic of source code originality shares some similarities with other
fields, notably the natural languages' plagiarism detection and code
cloning detection, these are also briefly introduced.

For each reviewed tool an example plagiary is also given to illustrate how
different plagiarism detection tools respond to various cheating
techniques as well as to introduce these basic code alteration methods.

2.1 Source Code Plagiarism Detection Tools
Programs capable of detecting plagiarized submissions were firstly
introduced in the early 80th and during the past 20 years they have
evolved enough to be divided into three distinctive generations:

Generation Description

1 Statistical characteristics (also called attribute
counting systems) of a source code, such as number of
words, number of lines of code (LOC), parenthesis
count, number of variables, etc.

2 Source code is transformed into a simpler form where
various irrelevant features of the program are lost,
such as whitespace characters, variable and function
names, etc. The resulting sources are then matched
against each other.

- 5 -

Generation Description

3 Exploits the semantics of a program at least to some
degree. This includes checking code blocks in the
order they are executed in a program, changing
function calls, etc.

Table 2: Generations of source code plagiarism detectors

It is obvious that the greater the level of a particular tool the wider is the
range of revealed plagiarized submissions. However, a threat of over
evolved plagiarism detector is very real as all submitted programs are
very likely to behave in the same way, i.e. to be semantically equivalent.
And with smaller and more precisely defined assignments it is even more
probable that two not plagiarized (i.e. clean) programs would be marked
as plagiarized because they are semantically equivalent4.

2.1.1 First Generation Tools
As already briefly mentioned, attribute counting systems (also called
feature comparison systems) compute several characteristics of the
program source code into a feature vector which is then compared
against other vectors using usually standard Eucleidian metrics to
determine the distance of the submissions.

According to [Jonas01] these characteristics can be described using the
following profiles:

• the physical profile, which consists of properties of the source text
that are not related to any specific language. These often include
LOC, characters per line, average length of words, character
statistics, etc.

• the Halstead profile grouping traits related to individual
(programming) languages. This can vary from simple metrics as the
average token length, token statistics and tokens per line to more
complicated statistical analysis of token sequences

• and the composite profile being the combination of both

The following simple example illustrates both the advantages and
weaknesses of the feature comparison system plagiarism detection. Both
source codes are used to compute the Fibbonaci numbers, the left one
being original, and the right one deliberate plagiate. These submissions
are then compared using vector consisting of the following features:

• number of identifiers, keywords, and literals used

• average number of tokens per line

• average length of token

• average number of operators per line

4 This observation is very important as this is one of the key motivations for
Crosscheck's ability to tune its precision for different assignments.

- 6 -

Although the most advanced systems from this category consisted of
more than 20 different characteristics (e.g. system presented in
[Faidhi87]), the above presented list represents a reasonable set of
features to demonstrate the possibilities of the method.

1 int multiplication(int x,int y) {
2 int result=0;
3 while (x>0) {
4 result=result+y;
5 x=x-1;
6 }
7 return result;
8 }

1 int mult(int p1,int p2) {
2 int r=0;
3 while (p1>0) {
4 r=r+p2;
5 p1=p1-1;
6 }
7 return r;
8 }

Text 1: Attribute Counting Example using identifier renaming

It is obvious from the source codes that only the most basic method,
i.e.the identifier renaming was used. The feature vectors and their
distance are presented in the following table:

Feature Original Copy Second

of identifiers 11 11 11

of keywords 6 6 6

of literals 3 3 3

of tokens per line (average) 4.88 4.88 9.75

average length of a token 2.18 1.61 1.61

Average number of operators per line 2.38 2.38 4.75

Distance 0.57 / 5.468

Table 3: Distance of identifier renaming example

The final distance is very small as the only one different feature is the
average length of a token. Moreover the other features are remarkably
simmilar which leads without any doubt to the conclusion that the
submissions are plagiarised.

However making the modifications to the code only slightly more
complicated by grouping multiple instructions on the same line, we can
easily obtain drastically different vector distance (as shown in the fourth
column in the above table):

1 int mult(int x,int y) {
3 int r=0; while (x>0) { r=r+y; x=x-1 } return r;
4 }

Text 2: Multiplication with line boundaries changed

With this still extremely simple change the overall distance has grown
roughly 10 times and the submissions might not be recognized as copies
now. It is not hard to imagine other, even more obfuscating, yet very

- 7 -

simple modifications that would change also the remaining features (most
obvious being the insertion of a dummy code).

The biggest weakness of the first generation tools was the fact that they
utilized only the minimal knowledge (if any) about the input language
which causes them to be successful only in cases where the two
submissions were nearly identical. Even with the usage of advanced
Halstead profile, algorithms belonging to the first generation can be
fooled even by code alteration techniques from levels 1 & 2.

On the other hand, due to the fact that these tools view the input source
only as a set of characters to be statistically examined, they can be used
(to some extent) even to address the human language plagiarism as has
been done with the first version of YAP [Wise92].

2.1.2 Second Generation Tools
The answer to the weaknesses of the first generation is to increase the
awareness of the input language syntax so that its key elements can be
emphasized while others (such as comments) can be discarded for the
purposes of the evaluation. Comments and whitespace stripping,
identifier renaming and unifying and various forms of hashing are all
common features of these algorithms.

For the final comparison various string tiling algorithms such as Running
Karp-Rabin, or Greedy String Tiling [Wise93] are generally used. Due to
increased time needed for these algorithms to compare each pairs of
submissions, several new methods of multi phase comparison have been
suggested.

Jplag

Jplag is arguably the most advanced and widespread tool nowadays in
active use [Prechelt00]. It utilizes the greedy string tiling algorithm and
shares basic principles with another well known program, the third
generation of already mentioned tool YAP [Wise96].

Jplag first tokenizes the input sources in a special way where same tokens
are assigned different meaning based on their position in the text, e.g.
block open at the beginning of a function has a different token than block
open after a for cycle for instance. As with almost all tools from this
generation, comments and whitespace are omitted completely. Identifiers
are all converted into a single identifier token and common language
elements, such as imported standard library modules, etc. are discarded
too.

After the tokenization, the resulting token streams are then compared
using the greedy string tiling algorithm whose results produce the final
result. An example of this process is shown in the following paragraphs,
where the same simple model program as in the previous chapter has
been used. The plagiarized code is the last code from previous chapter
updated to include dummy code portions that would clearly fool any first
generation tool:

- 8 -

1 int multiplication(int x,int y) {
2 int result=0;
3 while (x>0) {
4 result=result+y;
5 x=x-1;
6 }
7 return result;
8 }

1 int mult(int x,int y) {
3 int r=0; while (x>0) { r=r+y;
 x=x-1 } return r;
4 r=r*3+r-2; return r-1
5 }

Text 3: Multiplication code altered using renaming and dummy code insertion

The source codes are now tokenized into token streams which are
described in the text below. For identifier, the capital I is used, keywords
are transformed to their first bold letters, literals are replaced by the
capital L and opening and closing blocks are prefixed with their context,
e.g. Function being is F{, while begin is W{. Parentheses, semicolons and
other non-essential tokens are omitted too:

iIiIiIF{iI=LwI>LW{I=I+II=I–LW}rIF} iIiIiIF{iI=LwI>LW{I=I+II=I–
LW}rII=I*L+I–LrI–LF}

Text 4: Token sequences according to JPlag

Although it may not be obvious to the naked eye, these sequences are
remarkably similar, with the only exception being the code included in the
plagiary as shown in the figure below (the matching parts have been
highlighted in gray):

Input1: iIiIiIF{iI=LwI>LW{I=I+II=I–LW}rI F}
Input2: iIiIiIF{iI=LwI>LW{I=I+II=I–LW}rII=I*L+I–LrI–LF}

Illustration 1: Alignment of the multiplication source and plagiary(1)

This example can be further expanded with additional functions,
statement rearrangement (if possible due to data dependencies), etc.
Unfortunately one of the crucial weaknesses of this approach is its
inability to properly detect the dummy code. As seen even in the short
example above, the inserted dummy code (although being placed after
the return statement and therefore completely unnecessary5) causes
large misalignments, or may even fool the greedy tiling algorithm (no
polynomial time algorithm is known for this task [Wise93]) into false
smaller matches.

Tiling of tokenized strings is also susceptible to changes in the control
structure. Consider for instance a situation in which the while loop in the
multiplication example is replaced with a for loop. This is clearly a trivial
operation (simple loops, i.e. loops with no internal or external changes to
the control variable are easily interchangeable even at the automated
level [Schwartzbach03]) and thus is ideal for plagiarism purposes.

Another problematic issue are the expressions themselves – a simple
rearrangement obeying operator precedences and other important rules
may break the tiling under a reasonable threshold. This idea is based on
the fact that while best tiling can be always achieved using only

5 Which in this case can be easily detected by various means of the static analysis.

- 9 -

substrings of length equal to 1, this trivial result does not tell us much
about the real problem. Therefore a tiling threshold (usually from 2 to 10)
is applied to guide the algorithm to less trivial and more telling results
[Prechelt00].

While these techniques generally belong to the upper levels of plagiarism
levels (with the notable exception of dummy code insertion) and
oversensitivity to these issues may be harmful6, at least minimal tolerance
to these alterations is more than desirable. The following example of the
already known multiplication example shows the drastic effects of these
alterations on the 2nd generation algorithms:

1 int multiplication(int x,int y) {
2 int result=0;
3 while (x>0) {
4 result=result+y;
5 x=x-1;
6 }
7 return result;
8 }

1 int mult(int x, int y) {
2 int result=0
3 for (int i=0;i<x;i++) {
4 result=result+y
5 }
6 result=result+5;
7 return result-5;
8 }

Text 5: Multiplication - changes to control structure

Although the above created modifications can indeed be done without
understanding the true purpose of the original source code (this is hard
to illustrate on such a trivial example though), the two programs will
result in a very different token sequences and with a tiling threshold
reasonably low (considering the small length of the examples) at at least
three tokens, the overall comparison is rather miserable:

Input1: iIiIiIF{iI=LwI>LW{ I=I+I I=I–LW}rI F}
Input2: iIiIiIF{iI=LfiI=LI<II++F{I=I+IF}I=I+L rI-L F}

Illustration 2: String tiling of example with advanced alterations

This drop from 100% cover of source code to only 63% in such a small
code would pass the plagiarism detection and clearly shows the
limitations of this approach.

Xplag

While the tools from second generation generally understand the syntax
(and sometimes to some extent event the semantics) of the input
language(s), it is increasingly harder to add support for new languages.
Easy, yet extremely efficient way to solve this limitation is represented by
Xplag [Arwin06] which uses the intermediate language7 of a compiler
suite (in this case the GNU compiler suite) on which it then performs the
plagiarism detection. Not only does this mean that single application can

6 As already mentioned in previous chapters, large changes of the program statements
and control logic usually require more time than the coursework itself and are thus
inefficient for possible plagiarists.

7 In this meaning the language in which is represented the inner form after the
compiler frontend is finished, which may not even be a language in a human readable
sense.

- 10 -

detect plagiarism in a wide range of programming languages (C,C++,
Java, Fortran, etc.) but also allows the tool to detect plagiarism across
these programming languages as they all share a common intermediate
language.

Additionally the translation and various optimizations being done by the
compiler suite's frontend may be beneficial to the plagiarism detection
process as some of the problems mentioned above (really dummy code,
smaller control structure alterations) may be unified during the
translation. On the other way the big disadvantage in this approach is
that this unification cannot be controlled and is usually not designed to
meet plagiarism detection purposes. While some complex optimizations
may bring two original codes together, other changes (for instance from
procedural to object oriented code) that are easily done by humans
without changing the semantics will render the two intermediate
representations orders of magnitude different. Nevertheless this
approach is one of the most intriguing developments in plagiarism
detection in the past decade and can be greatly extended using emerging
compiler technologies such as LLVM [Lattner00,Lattner04].

MOSS

MOSS, a.k.a. Measure of Software Similarity is another tool created to
fight plagiarism in computer classes submissions at the University of
Berkeley, California. The initial part of the algorithm is fairly similar to
the Jplag as the input sources are tokenized and stripper off the
unnecessary elements. The biggest difference between MOSS and other
tools is that apart from pairwise juxtaposition, MOSS creates a k-grams
(overlapping sequences of consecutive tokens) which are then hashed to
allow a search engine to do the job of finding similar tasks. This allows
MOSS to test much larger pools that previously described algorithms.
They key algorithm is the winnowing algorithm for fingerprinting
documents which is described in [Schleimer03].

Other tools

Other tools dealing with the code plagiarism problems together with
more technical details about already mentioned tools can be found in
[Maj08].

2.2 Code Cloning Detection
Due to its important commercial implications, code cloning detection
systems has been around much longer than plagiarism detection tools
and since they share some striking similarities their algorithms can be
(and were) easily adapted for the plagiarism detection purposes [Burd02].

Code cloning systems are used to find similar portions of source code in
large projects (such as Linux kernel [Zhenmin05]) which are usually
caused by improper refactoring or copy-paste style programming.
Identified code clones are then reported to the user and should be
rewritten in order to achieve correct output code.

- 11 -

CCFinder

CCFinder [Kamiya02] is an industrial quality tool for detection code
clones in large source code repositories whose basic functionality
(searching for copied code) is remarkably similar to the second
generation tools in plagiarism detection. However CCFinder includes
some important improvements described by various transformation rules
which are executed during the tokenization process.

Rules for C++ language include namespace stripping (std::string to
string), template stripping (vector<int> to vector) and others. Their
detailed description can be found in [Kamiya00]. The rest of tokenization
process is fairly similar to that of Jplag, variables are unified, several
unimportant tokens are omitted, etc. Furthermore the authors of
CCFinder are aware of the fact that while some code clones are serious,
others (although cloned as well) are unimportant and should not be
reported at all (such as table initializations).

2.3 Plagiarism in Human Languages
Although a comprehensive review of tools used to combat plagiarism in
human languages is out of the scope of this thesis, due to the many
similarities they share with the computer languages plagiarism detection,
it is imperative to give full introduction also to this subject.

Human language plagiarism is very different from computer languages
due to the two main facts:

• syntax of natural languages is often extremely complex and context
sensitive, whereas most programming languages fit into the context-
free grammars category (sometimes even the LL class). Moreover
formalized semantics of natural languages is virtually non-existent
(although semantics of certain languages, such as C++, is extremely
complex, its subsets can be easily tested and checked which is not
possible in context sensitive human languages)

• although the idea of paraphrasing (using thoughts and sentences
from unreferenced sources in their original or only slightly modified
versions) can be roughly compared to rewriting of a computer
program, the main problem of computer languages (e.g. the fact
that two submissions to the same task are ideally identical) is not
the issue in natural languages where their enormous ambiguity and
complexity renders two identical submissions impossible even for
fairly small tasks.

As the potential market for natural languages is much larger than the
market of computer languages (especially in English) there are well
established commercial tools available for this task as well as much
larger basin of possible plagiaries with even specialized web pages
offering papers to almost any topic, the so called essay mills.

This means that plagiarism detectors has to cross-reference the
submitted essays not only with their peers but possibly also with the
Internet sources and past submissions8. Therefore most of these tools

8 Which caused large legal dispute about the possibly author & copyright law
infringements by the testing companies as described in [Foster02, Churchill05]

- 12 -

implement the two phase searching algorithms in which at first searching
engine is used to narrows the set of likely-to-be originals of the
plagiarized work which are then juxtaposed for final results.

Turnitin

Another property of these systems is usually very detailed presentation of
their results and automated submission batch testing. The most widely
used system is the turnitin.com which is available both for Universities
and High Schools throughout the world [Turnitin07, iParadigms07,
Carbone01].

Unfortunately due to the commercial nature of this service only little is
known about the actual algorithms. Turnitin uses two phase search and
final juxtaposition are returns complete report indicating an overall score
of the document as well as detailed information about any problematic
occurrence.

Another key ability of turnitin is its cooperation with e-learning suites and
clear and simple user interface for both students, and professors.

2.4 Conclusion
Due to the limitations of already existing plagiarism detection tools and
the nature of the problem, future tools should improve in their semantic
understanding of the checked submissions to allow for more exact
results. As the semantic understanding of input languages makes any
additions harder, using some form of an intermediate language is
generally good idea. Additionally, to allow larger submission databases to
be processed either the algorithms must be simplified, or a two-phase
search should be implemented. An ideal detection tool should also focus
on integration with already existing e-learning suites to improve its
practicality.

On the other hand, cross-language plagiarism detection seems to be of
minor relevance as this particular technique is not suitable for cheating
purposes9 [Arwin06].

9 However recent development of automatic translation tools between computer
languages and generally stronger refactoring techniques may prove the importance
of this feature in the future.

- 13 -

- 14 -

3 Solution Overview3 Solution Overview

This chapter presents the overview of Crosscheck's approach to the
plagiarism detection. As a short introduction it does not give any reasons
for the used techniques nor does it engage in their explanation, both of
which can be found in latter chapters dealing each one with a single
stage in the plagiarism detection algorithm presented here.

3.1 Crosscheck's Stages
At the beginning each submission is translated into an intermediate
language. This translation does not check for any errors in the
submissions and tries always to translate as much of the code as possible
as it is assumed that all submissions are valid. After the submission is
translated into the intermediate language, several analyses are
performed on the program to determine the following properties:

1. A program flow is created which is essentially the original program
where all subroutine calls have been replaced with their respective
code so that the whole program is only one function. Obviously
special cases such as recursion or function pointers must be dealt
with separately.

2. Code reachability analysis is performed to find any code that will
never be executed. Any findings in this test are immediately
reported as suspects since unreachable code is always a sign of
plagiarized coursework10.

3. Code importance analysis attempts to identify the key parts of the
program. Knowing these parts can not only add weight to the later
comparisons but also aid in determining relevant submissions which
should then be juxtaposed one to one. Additionally important
variables are also determined as equivalence in these variables may
suggest plagiarized setup problem.

4. Variable propagation analysis tries to identify the most important
constant variables so they can be used in the plagiarism comparison
or explanation.

10Or extremely bad programming technique, both of which should not pass unnoticed in
the academic environment.

- 15 -

When the analyses are finished the program is streamed into a special
parallel string of tokens representing the instructions (with some
modifications) and these streams are then matched using slightly
modified string folding algorithm. This shows parts which are similar (or
same) in both submissions and therefore likely to be plagiarized.

After the comparison, a reporter then converts the findings into a human-
readable HTML file. The whole process is also summarized in the
following illustration:

It is obvious that the most costly part of the process is the actual
comparison using diagonal analysis due to the fact that each submission
must be compared with any other submission to produce full results.

At the end a careful human inspection of suspected courseworks is (and
will always be) required as no automated system can soundly decide
whether two programs are plagiarized or only coincidentally similar.

- 16 -

Illustration 3: Crosscheck's Architecture Overview

Submission 1 Submission 2 Submission N

Translation
to xIL

Translation
to xIL

Translation
to xIL

Program Path Program Path Program Path

Propagation Propagation Propagation

CMP

Result 1 Result 2 Result N

F
R
O
N
T
E
N
D

B
A
C
K
E
N
D

...

...

Importance Importance Importance

Reachability Reachability Reachability

CMPCMP

CMPCMP CMP

CMP CMPCMP

Reporter Reporter Reporter

4 Intermediate4 Intermediate
LanguageLanguage

In order to be capable of detecting plagiarism across multiple
programming languages, Crosscheck translates all input sources into the
intermediate language (IL). Although this idea of analyzing the
intermediate language representation rather than the original code is not
new, the previous implementations either used intermediate languages
already available as inner form representations in various compiler suites
[Arwin06] (notably the GCC and Microsoft .NET), or created rather
simplistic intermediate language not capable of preserving many of the
original program's features.

The obvious advantage of the former method is that together with the
already existing IL the application can also benefit from the compiler
suite front-ends (analyzers, parsers) and even code optimizers. However
these intermediate languages are designed for a completely different
purpose and while they retain 100% semantic similarity with the original
code (otherwise translated programs would do something else than
sources) they drop most of the information needed to evaluate their
similarity for the plagiarism detection purposes, e.g. they lack the
information about used control structures, program paradigms, variables,
etc. With the usage of code optimizers the issue only deepens: while code
optimization may rewrite code statements in a way that semantically
equivalent statements look the same way, it may add many false positives
to the detection, which is more apparent especially with smaller tasks.
Alternatively code transformation done by the compiler suite might add
unwanted code (in order to make the program executable) in larger
assignments (such as object oriented programming (OOP)) which may
later obfuscate the detector.

Let us consider, for example, the simple example of displaying the digits
of a given integer in reversed order, i.e. the least significant digit first,
the most significant digit last. This task can be easily performed either
recursively as shown in the left column, or iteratively (in the right
column).

- 17 -

1 void displayDigits(int x) {
2 if (x==0) return;
3 cout << x % 10;
4 displayDigits(x / 10);
5 }

1 void displayDigits(int x) {
2 while (x!=0) {
3 cout << x % 10;
4 x=x/10;
5 }
6 }

Text 6: Recursive and Iterative version of displayDigits()

Clearly these two snippets alone are not cheating as rewriting recursion
(either way) is more complicated than the computed task in general.
However most modern compiler suites will identify the tail recursion
present at line 4 in the recursive code and thus rewrite the whole
function iteratively which is more efficient in imperative languages11.
Hence after compiler suite preprocessing these two examples will be
false positives, i.e. marked as plagiarized.

On the other hand, it is not hard to imagine two programs that would
yield a false negative result. When the algorithm is more complicated, a
simple transition from non-OOP to OOP code might add lots of code
implementing the OOP functionality which would then lead to smaller
proportion of the original code in the compiler's output and thus to
overall lower similarity mark. This effect could be even more significant
when virtual methods and dynamic typecasting is used.

The second presented option was to design a new intermediate language
with keeping in mind the needs of plagiarism detection system. However
all previous attempts to do so concentrated on the possibility that when
the IL is designed to be simple enough it may introduce significant
“optimizations” (in the plagiarism detection perspective) that will drop
semantical equivalence with the source in order to simplify the output so
that various cheating attempts could be neutralized. Great example of
such IL is the inner form used in the CCFinder [Tamiya02].

While such code provides the necessary optimizations for the plagiarism
detection, it drops valuable information about the source code structure
that can later be used to analyze the outcome and either assist the
teacher with understanding the plagiarism methods used, or more
importantly determine whether the particular example is cheated or not
according to the assignment bias.

4.1 Crosscheck IL Architecture
To overcome the above mentioned problems associated with the
intermediate language design, the Crosscheck Intermediate Language
(hereinafter only xIL) must fulfill the following features:

• it must be semantically equivalent to any of the possible source
languages. Although this can be theoretically achieved by
demonstrating that the xIL is Turing-complete (based on the fact
that all programming languages are at most Turing-complete), and
the xIL indeed is Turing-complete (as is demonstrated in chapter

11The assembler equivalent of the given examples is not presented as the transition is
simplistic.

- 18 -

XXYY), for the plagiarism detection purposes it is logical to assume
that the xIL would be capable of mimicking control structures and
even paradigms used in the source code. With wide range of
source languages it is not possible to satisfy this requirement
without the inclusion of meta instructions described later, whose
only purpose is to keep information about the used programming
style12. Another benefit of meta instructions is that plagiarism
detection can be computer on classic instructions and when the
matches are done they can be filtered using the meta instructions'
information.

• The intermediate language must also have as few instructions as
possible to simplify the later analysis and these instructions must
be flexible enough to be transformed in the later phases of
Crosscheck analysis,

• yet it should define certain high-level instructions to prevent the
inclusion of redundant implementation code as is done in compiler
suites. This particularly leads to a very simple and high level
memory model.

• Especially for Crosscheck needs, the xIL must be designed for the
latter abstract interpretation. This means the language must
support parallelism (as a cut-down version of the nondeterministic
computer).

• And of course it will not hurt if the xIL will be at least partially
human readable so that the Crosscheck's results can be manually
reviewed and understood.

These requirements ultimately lead to a language that shares many
common principles with both the assembly language (as the lowest level
of human readable language) and some of the modern garbage collected
high level languages. Its basic properties are explained and referenced in
the following chapters together with various examples of xIL code.

4.1.1 Memory model
Memory in the Crosscheck's IL is garbage collected13 and invisible to the
programmer who can only access the memory using variables. While
internally each variable is a pointer, these pointers are not available to
the programmer with the only exception of function pointers used in call
instructions.

12It is worth noting that the possible source languages should be limited only to one
family of languages when using Crosscheck's cross-language capabilities as
transformation from various families (e.g. functional and imperative) may result in
extremely different code (not mentioning the fact that rewriting problem from one
family to another is by far more complex than understanding its principle and thus is
not interesting for plagiarism detector)

13However the garbage collector is not implemented in Crosscheck as its purpose is not
to execute the code.

- 19 -

Variables

Variables in xIL have names in specific format, starting with capital 'V'
followed by a number representing the variable identifier itself. If a
variable name has to be preserved, the binding of the variable should be
preceded by a meta instruction.

VAR :: LETTER {0} DECIMALN
DECIMALN :: DIGIT {DIGIT}
DIGIT :: '0' | … | '9'

Although it is theoretically possible to use the same variable id for more
than one physical variable, such practice is highly discouraged as xIL has
no techniques to resolve name conflicts, in which always the closest (in
terms of nested sequences) variable will be used.

xIL does not require the variables to be declared prior to their first
assignment with rules similar to Python and other dynamic languages:
The first occurrence of the variable is alsi its declaration, therefore the
first occurrence (in the control-flow sense) must be an assignment.
Reading from an unassigned variable should raise an exception.

Each variable can be treated as an array using the index operator '[]'. The
same rules that apply for single variables apply also for the indexes.
When no index used, the default value (index 0) is returned.

The scope of the variable is always from its first occurrence (declaration)
to the end of the sequence in which it was declared. Global variables are
variables declared in the main program.

4.1.2 xIL Elements
The xIL syntax is case and whitespace sensitive (thus resembling the
Python language syntax in a way) where whitespace is used to identify
the sequence of instructions. The other language tokens are: keywords
(e.g. instruction names), identifiers (variable names), immediates
(numerical, character, or string literals), operators and comments.

Keywords

xIL's set of keywords is very limited and contains only the instruction
names, meta instruction classes and two boolean constants as is
summarized in the following table:

assert
bind
call
eval
exec

false
inparallel
jump
meta
name

return
sequence
true

Table 4: xIL Keywords

Identifiers

IDENT :: (LETTER | '_') { LETTER | DIGIT |'_' }
LETTER :: 'a' | … | 'z' | 'A' | … | 'Z' | ...

- 20 -

Identifiers in xIL are any alphanumeric literals starting with either a
letter (from any language) or an underscore followed by arbitrary number
of letters, numbers or underscores.

Immediates

IMM :: '”' STRING '”' | NUMBER
STRING :: char | '\\' | '\”' | '\n' | '\t'
NUMBER :: {-} (DECIMALN [FLOAT] | HEXN | OCTN | BINN)
FLOAT :: '.' DECIMALN
HEXN :: '0x' HEX { HEX }
OCTN :: '0o' OCT { OCT }
BINN :: '0b' (0|1) { 0|1 }
HEXN :: '0' | … | '9' | 'a' | … | 'f' | 'A' | … | 'F'
OCTN :: '0' | … | '7'

Immediates in xIL are very similar to other languages with the following
differences:

• character literals are written as strings with length 1, all line
endings are converted to the unix style '\n' (0x0A)

• floating point numbers cannot use the exponent notation

• octal numbers have the prefix of '0o' instead of '0' known from C

Operators

xIL supports a reduced range of both binary and unary operators known
from other languages. The following table lists all available operators
ordered by their precedence (decreasing) with a brief explanation:

Operators Meaning

(), [] Parentheses, Array access

! Logical negation, or bitwise complement

*, /, %,** Multiplication, Division, Modulus and Exponent

+, - Addition, Subtraction

<=, <, >, >= Lesser or equal, lesser, greater, greater or equal

==, != Equal, not equal

&, |, ^ And, Or, Xor (logical and bitwise)

Table 5: Precedence of Operators in xIL

If an operator can have both logical and bitwise meaning, the correct
operator is assigned dynamically based on the variable types. Therefore
logical and bitwise variants have the same precedence in xIL.

As xIL does not support assignments in expressions, it also lacks all
assignment operator variations well known from languages such as C++
or Java. For the purposes of simplicity xIL also lacks support of operators

- 21 -

which can be expressed by other more general ones (for instance bitwise
shift is represented by multiplication or division by the powers of 2).

Division in xIL behaves in the same way as it does in most dynamically
typed languages, i.e. division of two integer operands will always return
an integer, division with at least one float argument yields float result.

Comments

xIL supports comments in the form known from Python programming
language, i.e. No mutli-line comments are allowed and single line
comments are prefixed with '#'. By default comments are not generated
by xIL generators as comments from source files are translated to meta
instructions.

4.1.3 Expressions in xIL
Expressions in xIL (the right hand sides of assignments using the eval
instruction) are defined using the terms:

• variable, and immediates are terms

• variable indexed by a term is a term

Terms together build the expressions:

• term is an expression

• negation of an expression is an expression

• two expressions joined with a binary operator are an expression

• (expression) is an expression

4.1.4 Instructions
Crosscheck IL commands, control structures and functions are in general
called instructions, of which this chapter serves as a reference. The
instructions are ordered alphabetically and each instruction is presented
with E-BNF defining its complete grammar, a description and a simple
usage (for more details refer to the chapter Translation from C++, where
are listed more complex examples of IL programs together with their C+
+ equivalents).

Assert

ASSERT :: assert CONDITION
CONDITION :: var REL imm | var REL var
REL :: == | != | <= | >= | < | >

The assert instruction allows conditional execution upon the result of the
evaluation of the condition. If the condition is true, the code following the
assert instruction to the end of the sequence will be executed, if the
condition evaluates to false, the following instructions are not executed.
The condition can be either true, false, or a comparison of either two
variables or variable and an immediate.

- 22 -

Using the assert instruction one can easily write the if control structure
well known from other programming languages:

1 eval v001 = 56
2 sequence:
3 assert v001 == 56
4 eval v002 = “Condition True”
5 exec (v002) # writeln

Bind

BIND :: bind var = var

The bind instruction is used to reference the right-hand side variable into
a left-hand side variable. This means that any change to the left variable
will also change the right one (as they share the same memory). Once
variable is bound the bond will survive the return instructions. To
unbound the variable, variable must be bound to itself.

Variable binding also survives the return statements which means that
when a variable is bound inside a sequence and this variable is then
returned, the binding survives.

A simple example of the bind instruction follows:

1 eval v001 = 45
2 bind v002 = v001
3 eval v002 = 67
4 assert v001 == 67 # true

Call

CALL :: call (var|imm) '(' [var {,var }] ')'
 [':' var {,var }]

Call instruction is used to call a subroutine (in the IL context a sequence)
specified either by a variable or by an immediate address. If the sequence
accepts input parameters, they can be defined in the parentheses after
the sequence name as variables. If a sequence returns any results their
variables must be specified after the colon at the end of parameters list.
Please note that all parameters are always passed by their value. If by
reference behavior is needed, the following syntax should be used:

1 eval v001 = 1
2 call 5(v001):v001
3 return
4 sequence byReference(v002):
5 eval v002 = v002 1 +
6 return v002

Eval

EVAL :: eval var '=' EXPRESSION

Eval is virtually an assignment operator and is the only instruction in the
IL that changes the variables' values. Due to this behavior, IL is strictly
imperative language and is not capable of implementing source codes
from functional languages effectively. However this does not mean

- 23 -

Crosscheck cannot be used to check for plagiarisms in the functional
languages because the amount of code added to the functional programs
in order to convert them to the IL is almost the same in all submissions.

An example of the eval instruction can be found under the call
instruction.

Exec

EXEC :: exec '(' [var {,var }] ')' [':' var {,var }]

The exec instruction is very similar to the instruction call with the only
difference being that exec is calling code out of the scope analyzed by
Crosscheck. This usually means either a predefined code similar to all
submissions, or a call to source language's standard library, etc. Exec is
also always accompanied by meta instruction specifying the call.

Inparallel

INPARALLEL :: inparallel ':' INSTRUCTION { INSTRUCTION }

The inparallel block is used to denote sequential instructions that can be
executed in parallel. A member of inparallel block can also be the
sequence instruction as shown in the example below:

1 inparallel:
2 exec ()
3 sequence:
4 eval v001 = 1
5 exec ()

Jump

JUMP :: jump [imm | var]

The jump instruction is used to jump in the code. The only parameter of
the instruction is the immediate or variable with address of the target
instruction. Jump cannot point to named sequence instructions with
parameters and those which returns any value14. Jump is the instruction
behind all cycles in the IL:

1 eval v001 = 10
2 sequence:
3 assert (v001>0)
4 eval v001 = v001 1 -
5 jump 3

Return

RETURN :: return [var {,var}]

The return instruction is used to return from the sequence to the calling
code. Return can be followed by any number of variables to return
(separated by commas). Please note that in this case as well as it is with

14This is not checked though.

- 24 -

the function call all variables are always returned by value, never by
reference.

The following code shows a simple recursive function that calls itself until
its parameter is equal or less than zero:

1 sequence (v001):
2 sequence:
3 assert (v001 > 0)
4 eval v001 = v001 1 -
5 call 1(v001)
6 return

Sequence

SEQUENCE :: sequence [SEQUENCE_ARGS]: SEQUENCE_BODY
SEQUENCE_ARGS :: '(' var {, var } ')'
SEQUENCE_BODY :: INSTRUCTION { INSTRUCTION }

Sequence is the instruction instantiating a block of sequentially
executable code. Sequence instruction can have any number of
arguments (expressed as variables) in optional parentheses. Such a block
is callable either by call or jump instructions (the latter only if the
sequence has no arguments15).

Examples of sequence instruction usage can be found in previous
instructions.

4.1.5 xIL Metainstructions
Metainstructions are very important concept in the xIL design as they
allow the language to express not only the formal semantics of the source
program but also the different techniques used. In this chapter the meta
instruction and its options is presented in great detail as this instruction
is crucial for the Crosscheck's detection capabilities.

This instruction can be anywhere in the xIL source code and it is always
applied to the first non-meta instruction after it. If two or more
metainstructions are sequenced, they all apply to the first non-meta
instruction following them.

Each metainstruction begins with the keyword meta followed by the meta
type description and the value delimited by double quotes (double quotes
inside the meta value are coded using the escape sequences '\”').

By default, Crosscheck recognizes the following meta instruction types:

Comment

Comment is probably one of the simplest meta types as it is used only to
store the comments present in the source inputs. The meta comment
instruction is special among the other meta instructions as it actually
corresponds to a source input element. Therefore other meta instructions
can refer to it as described in the example below, where source and line

15Note that jump instruction cannot check whether the target sequence returns any
values, which may potentially cause a runtime exception.

- 25 -

meta types are referring both to the eval and exec instructions and to the
meta comment instruction at line 3:

1 # Prints “Hello world”
2 print “Hello world”

1 meta source “example.py”
2 meta line “1”
3 meta comment “ Prints \”Hello world\””
4 meta line “2”
5 eval v001 = “Hello world”
6 meta name “cout”
7 exec(v001)

Text 7: meta comment Instruction Example

Control

Control is a special meta instruction that is used to determine what kind
of control structures has been used in the input source. Similarly to the
meta type instruction, its values are not determined exactly, however,
some standard values used throughout Crosscheck are presented in the
following table. Control is particularly helpful when identifying means of
plagiarism used in different submissions.

For example, consider the following original and plagiarized pieces of
code. In this simplified example, it is obvious even to the naked eye that
the cheater changed the original for cycle to while and although the xIL
code (without meta instructions is virtually identical in both cases (the
situation would be only slightly different if do-while cycle would be used)
the control meta instruction clearly preserves the information of how
these two blocks of code were translated:

1 for (int i=0;i<10;i++)
2 cout << i << endl;

1 int i=0;
2 while (i<10) {
3 cout << i << endl;
4 i++;
5 }

 1 meta line “1”
 2 meta control “cycleFor”
 3 eval v001 = 0

 4 sequence:
 5 assert v001 < 10
 6 meta line “2”
 7 eval v002 = “\n”
 8 meta name “cout”
 9 exec (v001,v002)
10 meta line “1”
11 eval v001, v001+1
12 jump 4

 1 meta line “1”
 2 eval v001 = 0
 3 meta line “2”
 4 meta control “cycleWhileDo”
 5 sequence:
 6 assert v001 < 10
 7 meta line “3”
 8 eval v002 = “\n”
 9 meta name “cout”
10 exec (v001,v002)
11 meta line “4”
12 eval v001, v001+1
13 jump 4

Text 8: meta control Example with two different cycles

- 26 -

Value Description

cycleFor A cycle which automatically manages its own control
variable and is usually executed for a known number of
repetitions. A typical example is the for(;;) cycle from the
C/C++ languages.

cycleWhile
Do

A cycle driven only by the condition that will execute 0,
1, or multiple times, i.e. the condition is evaluated
before evaluating the cycle body, e.g. while cycle from C/
C++.

cycleDoWh
ile

Cycle driven by the condition, where the condition is
evaluated after the body resulting in the body of cycle
being evaluated at least once in each case. Typical
example is the repeat – until cycle known from various
Pascal language dialects.

cycleForIn Cycle iterating over an iterable object or collection.
Similar to the for cycle because no control variable is
used. This cycle is usually found in high level languages,
such as Python (for in) and is commonly known as for
each cycle.

cycleBreak Statement used to terminate the execution if the whole
cycle from the cycle's body (e.g. a jump to first
instruction after the cycle body in assembly language).

cycleConti
nue

Statement used to terminate the current pass of the
cycle, e.g. jump to the cycle's condition.

conditionIf Standard conditional statement known from almost all
programming languages.

conditionEl
se

The part of a conditional statement that is executed if
the condition is false.

conditionC
ase

Multiple branching either upon an integer variable
(C/C++) or general (Python). Usually known as switch
statement (notable exception being Python language
which uses the elif statement for the same purpose).

conditionIf
Op

Ternary operator “?:” known from C/C++ and other
languages.

exceptionR
aise

Statement used to raise an exception, in general
informing the user about an error.

exceptionC
atch

Statement catching the exception attempting to remedy
the situation.

function General function.

method General method, i.e. function with first implicit
parameter being the object itself.

methodVirt
ual

Virtual method

Table 6: meta control Standardized Values

- 27 -

Function

Function meta type determines the definition of a function. The value of
the instruction is the name of the function. This meta instruction is
followed by couples of meta type and meta name instructions identifying
each of the function's arguments (where applicable).

1 void myFunction(int i) {
2 int test=i+1;
3 return test
4 }

1 meta function “myFunction”
2 meta type “integer”
3 meta name “i”
4 sequence(v001):
5 meta type “integer”
6 meta name “test”
7 eval v002 = v001+1
8 return v002

Text 9: meta function Instruction example

Language

The language meta instruction determines the language of input source
from which the xIL is taken. Along with the line and source metas,
language is also valid for multiple following instructions until new
language is defined.

As each new Crosscheck's input language should add its own value for
the language, in this project only the following language values are used:

Value Language Description

c Standard C language (based on the gcc)

cpp Standard C++ language (based on the g++)

java Standard Java language (base on the Sun Java 1.4)

Table 7: xIL Language Values Recognized by Crosscheck

Although additional languages are possible, their language identifiers will
be ignored by Crosscheck16.

Line

To determine the line of input source the meta line instruction is used.
The scope of meta line instruction is not only the next non-meta
instruction, but the line is valid until next meta line or meta source
instruction. Therefore if a single input source line is translated into
multiple xIL instructions, meta line instruction must be the first
instruction in the sequence, as is shown in the example for meta source
instruction later in this chapter.

16This does not mean that Crosscheck will not be able to check if they are plagiarized,
only that no additional information will be available on positive matches (assuming no
modifications are done to the Crosscheck itself).

- 28 -

Name

This meta type is used to determine the name used in the input source for
identifiers (e.g. variables, new types, etc.). For a simple example, see the
meta function. Names are not assigned to temporary variables in the
input source and to the variables created during the translation to the
xIL.

The name meta type is also used to determine which external functions
are called using the exec instruction, as shown in the example below:

1 cout << “Hello world” 1 eval v001 = “Hello world”
2 meta name “cout”
3 exec(v001)

Text 10: meta name Example with external calls

Source

This meta type is used to describe the input source file from which the
following instructions were translated. As the meta line instruction,
source does not apply only to the next non-meta instruction, but it's scope
is extended till new source instruction is found.

Crosscheck puts source and line instructions before each callable
sequence instruction to determine the source file for the whole function17,
as shown in the following example (comment metas have been left out for
simplicity reasons):

1 // File main.cpp
2 #include “example.h”
2 int main(int argc, char** argv) {
3 displayMe();
4 return 0;
5 }

1 // File example.h
2 void displayMe();

1 // File example.cpp
2 #include “example.h”
3 void displayMe() {
4 cout << “This is me!“ << endl;
5 }

 1 meta function “displayme”
 2 meta source “example.cpp”
 3 meta line “3”
 4 sequence():
 5 meta line “4”
 6 eval v001 = “This is me!”
 7 eval v002 = “\n”
 8 meta name “cout”
 9 exec(v001,v002)
10 meta function “main”
11 meta type “integer”
12 meta name “argc”
13 meta type “string”
14 meta name “argv”
15 meta source “main.cpp”
16 meta line “2”
17 sequence(v003,v004):
18 meta line “3”
19 call 4()
20 meta line “4”
21 eval v005 = 0
22 return v005

Text 11: meta line and meta source Instructions Example

17However, this approach is not required by the pure xIL definition.

- 29 -

Type

This meta is used to specify the type described in the input source. The
following families of input source types are recognized and dealt with
according to the table below. As the types are usually replaced with a
family identifier, at this point some semantical information is usually lost.
This, however, does not pose any threat to the Crosscheck's recognizing
abilities due to the fact that for software plagiarism detection it is safe to
operate only on type families. In fact it is even desirable that simple
change from byte to word18 should appear as identical code.

Type Family Value Comments

any integer,
boolean

integer

any floating
point

float

any string, char string

any reference reference Type is specified by the target object.

any pointer pointer

object class
name

Type is the class name unless the class
is a built-in special class for which
additional rules apply.

Table 8: meta type Families

4.2 Expressiveness of xIL and input
languages

In order to use xIL as the intermediate language in Crosscheck, we need
to answer the following two important questions:

1. Is xIL able to express all possible algorithms written in any of
possible input languages? (i.e. can any program in the input
language be translated into a semantically equivalent program in
xIL)

2. Does xIL preserve enough information about the input sources to be
useful for the plagiarism detection purposes? (i.e. how well does the
comparison of two xIL codes estimate the relation between their
sources)

It turns out, that the answer to the first question is very simple using the
concept of Turing Machine [Kolar04]:

18For example in the Object Pascal programming language.

- 30 -

4.2.1 Turing Completeness of xIL
To demonstrate that any program written in any possible input language
can be also written in xIL it is only needed to demonstrate that xIL is a
Turing complete language, therefore any program (algorithm) capable of
being run by a Turing Machine (any program written in most current
programming languages) can be also written in the xIL.

The Turing completeness of xIL will be shown by proving that another
minimalistic programming language that has been previously
demonstrated to be Turing complete. Such a language is for instance the
counter machine formalized by Martin Minsky in [Minsky67]. This
language has arbitrary number of integer variables and the following
three functions:

• INC (r) – z:=z+1

• DEC (r) – z:=z-1

• JZ (r, z) – if (r==0) jump to instruction z, otherwise continue

Now it is easy to show how to emulate these instructions in the xIL. The
only problem is that in xIL the jump instruction can jump only to the
sequences. Not optimal, yet formally correct solution is to preface each
instruction in xIL with a sequence instruction, as is shown in the
following demonstration:

1 INC (r) 1 sequence:
2 eval r = r+1

2 DEC (r) 1 sequence:
2 eval r = r-1

3 JZ (r, z) 1 sequence:
2 assert r == 0
3 jump z

Text 12: Counter Machine Instructions and their xIL equivalents

Although this definition is formally correct, emulating an universal Turing
machine using the above algorithm (and using counter machines) will add
exponential overhead. Without formal verification, we will state that xIL
is indeed Turing complete because it contains multiple variables and
arrays, recursion and conditional branches.

4.2.2 Semantic Preservation in xIL
Unfortunately for the plagiarism detection purposes it is not enough to
demonstrate the Turing completeness of the xIL as the proof that xIL can
code any thinkable program from the input languages does not imply that
such a description is usable for cheating detection. Moreover, the mere
fact that xIL is theoretically capable of coding any algorithm does not
mean that the translation process is simple, nor that the semantics of the
internal parts of the program is preserved. This is due to the fact that
Turing Machine is concerned only about the form if the input and output
on the tape, not the program internals.

- 31 -

Based on the basic principle of Crosscheck's detection, the most
important characteristics of the program are the order in which the
instructions are executed (only their first time execution) and their
importance. Therefore any translation process should aim to preserve as
much as possible of these two key properties.

4.3 Translation from C++
To show the capabilities of the xIL, its limitations and practical
implications, a translation from the C++ language (which can be viewed
as the most powerful (in terms of expressiveness19) among the imperative
source languages) is described in this chapter. As some of the aspects of
the language are almost identical to the xIL they are not covered, while
others such as object oriented programming and complex expressions are
described in much greater detail.

All of the following examples should also contain numerous meta
instructions which will determine the original processes used. However
these instructions have been omitted from the examples in this report as
they unnecessarily increase the length of the examples and does not
provide any additional information to the translation process.

This chapter should not be taken as an xIL or C++ translation reference.
Full specifications of xIL semantics and of the translation process can be
found in the source code documentation of the respective functions.

Due to space constraints the complete reference together with additional
information on metainstructions and other relevant data can be found
only in the source code documentation in respective modules.

4.3.1 Preprocessor
While parsing, all local includes (i.e. double quoted includes) are treated
accordingly and the required files are imported. Since xIL output is only
one file created from possibly many C++ implementation source files
there may be several identifier redeclarations which are reported as a
warnings during the translation. All other imports are omitted as it is
presumed that non-local files are not parts of the submission.

Preprocessor macros are supported only for the purposes of conditional
translation and simple constants, which are translated as new global
variables.

4.3.2 Namespaces
xIL does not recognize namespaces as each namespace element is unique
as a function address, or constructor's address for objects. Other

19One can argue that Java or Python are more expressive languages due to their
advanced high level features such as garbage collection or even dynamic data types.
However as these aspects are native to the xIL itself it is obvious that their
translation to xIL will be as straightforward as possible. In this sense the “most
powerful” can be also viewed as the most different language (within reasonable set of
widespread imperative languages).

- 32 -

namespace elements such as various type definitions and not part of the
output xIL. Global variables are unique due to their variable addresses.

4.3.3 Variables
According to the xIL specification all variables are transformed to
variables. Each variable can be used as an array with either immediates
or variables as indexes. For simple types such as integers and floats this
mapping is easy. However, the following types need special consideration:

Unions

As all variables in xIL are untyped, there is no need for unions and
therefore unions are treated as simple variables (means their members
are discarded).

Enumerations

All enumerations are represented as integer types with their values
converted to positive numbers during the translation process.

Strings

Strings and constant char pointers are treated equally for the xIL
purposes. As each variable can hold a string literal by itself. Using
indexes on the variable will given access to specific characters. Any
method of std::string is translated into an exec instruction.

4.3.4 Pointers and References
References can be easily emulated using the bind instructions. Anytime a
reference variable is initialized to another value, the instruction bind is
used. When variable is bound, the bond is carried across return
statements thus allowing xIL to return references from functions.

Pointers on the other hand are a concept completely alien to the xIL
notion. Changes to dereferenced pointers are normal variable changes in
xIL and changes to addresses are equal to binding variables in the xIL.
The following table summarizes the most common pointer operations and
their xIL alternatives. In all these cases any variable is a pointer.

C++ xIL

p=q bind p = q

*p=6 eval p = 6

p[4]=7 eval p[4] = 7

p++ bind p = p[1]

p=NULL bind p = r0

Table 9: Pointer Operations in xIL

- 33 -

Operator New

While operator delete is quite easy since xIL is in theory garbage
collected language, the new operator poses some serious problems. When
a new memory is allocated, xIL destroys any bindings by bounding the
variable to itself. This essentially creates a new instance of variable which
can then be filled with the appropriate contents.

New arrays of simple types are omitted (there is no need to allocate the
memory for arrays since each variable is essentially an unlimited array in
itself). More complex types are then allocated using their respective
constructors.

4.3.5 Function calls
All functions are translated into xIL as parametrized sequences. All
variables are passed on a by value basis (meaning that their values are
copied). This implies problems when the parameters are either
references, or pointers as changes in their values (in the case of pointers
of their dereferenced values) should be visible also in the caller's code.

To overcome this problem, xIL uses the technique known from
simulations of functional programming languages [Finkel96]. When
function needs pointers and/or references they are passed normally by
value, and the number of parameters the function returns is increased by
one. When the function returns the parameters these are used to
overwrite values in the caller's context as is shown in the following
example:

1 int fnc(int i, int& j, int* k) {
2 i=5;
3 j=10;
4 k=7;
5 return i
6 }

? q=1
? q=fnc(a,b,c);

1 sequence(r1,r2,r3):
2 eval r1 = 5
3 eval r2 = 10
4 eval r3 = 7
5 return r1,r2,r3

? eval r8 = 1
? call 1(r5,r6,r7):r8,r6,r7

Text 13: Function and function call example.

4.3.6 Structures and Objects
First important thing about xIL and Object Oriented Programming (OOP)
is that xIL does not recognize access specifiers (such as private or public)
and all members and methods are public20. Therefore in the following text
structures and classes are treated equally21 (and referenced as classes
only).

Any object is represented by a single variable. Class members are stored
into designed indexes and so are method addresses. Each method has

20This makes sense when realizing that xIL does not need to control whether access
rights are not violated, an assumption for any program checked against plagiarism is
that the program is working, thus corresponding to all formal requirements.

21This notion is consistent with the general idea of structures and classes in C++,
where structures are essentially classes with default access set to public[Eckel00].

- 34 -

automatically added the first parameter which is the object itself in a way
well known from the Python programming language. Normal methods are
added to new indexes. Virtual methods are stored in the same index as
the methods they are overriding. Each methods returns not only its result
type, but also the object itself in the first place.

To create an object a constructor must be called. This constructor is not
the same as constructors in C++ as the xIL constructor only fills the
addresses of methods in the object variable as shown in the following
slightly longer example:

1 class A {
2 int x;
3 void setx(int j) {
4 x=j;
5 }
6 virtual int doSomething(int z) {
7 x=z+5;
8 return x;
9 }
10 } ;
11 class B:public A {
12 virtual int doSomething(int z) {
13 return z+x;
14 }
15 int getx() {
16 return x
17 }
18 } ;

? A* x=new B();
? x.setx(5);
? x.doSomething(4);

 1 sequence:
 2 eval r0[1] = 5
 3 eval r0[2] = 8
 4 return r0
 5 sequence(r1,r2):
 6 eval r1[0] = r2
 7 return r1
 8 sequence(r3,r4):
 9 eval r3[0] = r4+5
10 return r3,r3[0]
11 sequence:
12 call 1():r5
13 eval r5[2] = 16
14 eval r5[3] = 19
15 return r5
16 sequence(r6,r7):
17 eval r8 = r6[0]+r7
18 return r6,r8
19 sequence(r9):
20 return r9,r9[0]

? bind r10 = r10
? call 11(r10)
? call r10[1](r10,5):r10
? call r10[2](r10,4):r10,r

Text 14: Classes and Inheritance in xIL

4.3.7 Control Structures
Generally, all control structures known from the C++ language are easily
transformed to xIL. This chapter lists the most common of them and
shows their counterparts in the xIL. Although the following examples
contains only blocked examples, single lined statements can always be
transformed as blocks containing only one statement and therefore the
presentation is satisfactory.

If and If-Else Clauses

If clause is easily transformed into the xIL using the inparallel
instruction. In case of missing else statement, the inparallel instruction
has only one branch and can thus theoretically be replaced with sequence
instruction. However, for the plagiarism recognition purposes this is not
performed. Obviously the ternary operator ?: is only a special case of if-

- 35 -

else structure and is dealt with accordingly. The following example shows
the translation template for if-else clause:

1 A
2 if (condition) {
3 B
4 } else {
5 C
6 }
7 D

 1 A
 2 eval r = condition
 3 inparallel:
 4 sequence:
 5 assert r != 0
 6 B
 7 sequence:
 8 assert r == 0
 9 C
10 D

Text 15: Translation of the if-else clause

It is worth noting that the translation of the condition itself (which is
essentially an expression) might be much more complicated and is
covered later in a special subchapter.

Switch Clause

Switch case is very similar to the nested if-else statements. When some
case branches does not contain break statements, other statements to the
first break or end of the switch statement are attached, as is shown in the
following example:

 1 A
 2 switch (expr) {
 3 case a:
 4 A
 5 break
 6 case b:
 7 B
 8 case c:
 9 C
10 case d:
11 D
12 break
13 default:
14 E
15 }
16 F

 1 A
 2 eval r=expr
 3 inparallel:
 4 sequence:
 5 assert r==a
 6 A
 7 sequence:
 8 assert r!=a
 9 inparallel:
10 sequence:
11 assert r==b
12 B
13 C
14 D
15 sequence:
16 assert r!=b
17 inparallel:
18 sequence:
19 assert r==c
20 C
21 D

- 36 -

22 sequence:
23 assert r!=c
24 inparallel:
25 sequence:
26 assert r==d
27 D
28 sequence:
29 assert r!=d
30 E
31 F

Text 16: Switch clause translation

Although this method might seem more lengthy and complex than
necessary it provides the switch template in its most general form. The
insertion of code (statements C and D in the example) additionally
increases any possibilities of matches in altered code with the same
functionality by grouping code together without unnecessary xIL code.

For and While Cycles

Cycles are translated straight into xIL using sequences and loops as
shown in the following examples for the two most common cycles (for and
while). Other special cycles existing in other languages might seem quite
different (for instance the foreach cycle in Java or the for in cycle in the
Python language), yet they can always be easily transformed to the
standard cycles with their bodies intact [Aho06].

1 A
2 for (init;cond;iter) {
3 B
4 }
5 C

1 A
2 init
3 sequence:
4 eval r = cond
5 assert r == 1
6 B
7 iter
8 jump 3
9 C

Text 17: For cycle translation into xIL

1 A
2 while (cond) {
3 B
4 }
5 C

1 A
2 sequence:
3 eval r = cond
4 assert r == 1
5 B
6 jump 2
7 C

Text 18: While cycle in xIL

The two examples above also show the remarkable similarity between the
two cycles in the xIL as both the cycles have same starting and ending
instructions. This is the simplest possible example of a key function of xIL
which is to bring slightly different subscriptions closer22.

22The same functionality as can be seen in tools such as XPlag when utilizing
intermediate language of compiler suites. However, this ability of xIL is tailored

- 37 -

The following example shows the break and continue statements and
their translation in the “more complex” for cycle:

1 for (init;cond;iter) {
2 A
3 continue;
4 B
5 break;
6 }
7 C

 1 init
 2 sequence:
 3 eval r = cond
 4 assert r == 1
 5 A
 6 jump 9
 7 B
 8 jump 11
19 iter
10 jump 3
11 C

Text 19: Break and Continue statements

4.3.8 Expressions
Possibly the hardest part of translation from C++ to xIL is the translation
of various C++ expressions as xIL lacks many possibilities for creating
them that C++ takes for granted (notably calling functions and using
their results inside expressions).

To construct the expression tree, the simplified C++ expression parsing
grammar is used with only limited support of operators precedence as
shown in the following example. Please note that not all grammar rules
are explained (such as new declarations, etc.) for the simplicity reasons:

Assignment :: Logical AssignmentC
AssignmentC :: (=|+=|-=|*=|/=|%=|&=|^=|”|=”|<<=|==>)
 Logical AssignmentC
AssignmentC :: empty
Logical :: Comparison LogicalC
LogicalC :: (“||”|&&|^|&|”|”|!) Comparison LogicalC
LogicalC :: empty
Comparison :: Shift ComparisonC
ComparisonC :: (==|!=|<=|>=|<|>) Shift ComparisonC
ComparisonC :: empty
Shift :: AddSub ShiftC
ShiftC :: (<<|>>) AddSub ShiftC
ShiftC :: empty
AddSub :: MulDivMod AddSubC
AddSubC :: (+|-) MulDivMod AddSubC
AddSubC :: empty
MulDivMod :: Item MulDivModC
MulDivModC :: (*|/|%) Item MulDivModC
MulDivModC :: empty
Item :: {“-”} (“(“ Assignment “)” | ConstantItem |
 VariableItem [Index])
Index :: “[“ Assignment “]”
ConstantItem :: LITERAL|FLOAT|INTEGER
VariableItem :: [*\&]identifier [FunctionCall]
FunctionCall :: “(“ Assignment { , Assignment } “)”

especially for the cheating detection purposes.

- 38 -

During parsing, each C++ expression is parsed into an expression tree.
This tree is then scanned recursively from its leaves to the root and
certain operations are performed that splits the large C++ tree into
smaller expressions (if necessary) to allow their translation into the xIL.
During the translation process all calls to functions or methods (thus also
calls to user specified operators of complex types) are recognized and
replaced by proper function calls.

This is briefly shown in the following illustration and text (all variables
except the defined variable x and variable y are objects and these objects
have redefined operator +.

int x=(3+5*(10-o.x(3,5+y))+2+(o+z)

Text 20: Simple expression example.

After the creation of the expression tree, the tree is then parsed and the
following rules are checked:

- 39 -

Illustration 4: Expression tree

=

x +

+

3 *

+

-5

10 o.x()

3 +

5 y

2 +

o z

Rule / Root
token

Comments

Assignment
operator

Whenever an assignment operator is found, the
whole subtree is then extracted as a new expression
which will be evaluated before the processed
expression and its occurrence is replaced with the
left side of the assignment operator

Function call When a function call is translated, its nodes can be
either simple variables, or expressions. In the latter
case these expressions are extracted as assignment
operators to new variables which in turn will be
used in the function call. The function call is then
translated into a call instruction before the parsed
expression and is replaced by its returning value
(into a new variable) in the expression.

Operator on
objects

If operator is defined for the parameters
(essentially if the operator is defined for the left
operand, the operator is replaced with function call
to this operator and the rule for function calls is
used.

Special
operators on
built-in types

When a special operator not available in xIL is
found, (such as << or >> (bitshifts)) on built-in
variable types is found, it is replaced by its xIL
alternative. In this case by integer multiplication or
division.

Special
operators on
complex types

If their codes are not found, they are replaced with
an exec call.

C++ operators
(++,--) preorder

These operators are evaluated into new eval
instructions that are placed after the parsed
expression. Their value is replaced by the variable.
Additionally these operators are grouped together,
e.g. X++++-- is evaluated as eval x = x 1 +

- 40 -

Table 10: Expression translation rules

After applying the above rules, expression tree from the given example
breaks into the following smaller trees:

These expression trees are then translated into the following xIL code
(for simplicity reasons instead of variable numbers, the variable names
are used in this piece of code):

1 eval v2 = 3
2 eval v3 = 5 y +
3 call o.x(o,v2,v3):o,v4
4 call o.operator+(o,z):o,v1
5 eval x = 10 v4 – 5 * 3 + 2 v1 + +

Text 21: Translated expression in xIL

Note that the xIL expressions are in postorder notation to allow easier
checking and further analysis.

- 41 -

Illustration 5: Multiple trees from the single expression

=

x +

+

3 *

+

-5

10

2 v1

o.operator+(z) → v1

=

v2 3

=

v3 +

5 y

o.x(o,v2,v3) → o,v4 v4

- 42 -

5 Abstract5 Abstract
InterpretationInterpretation

Although the principle of abstract interpretation has been formalized and
explained in [Cousot77] because this tool is not well known outside the
domain of static analysis, it will be introduced in this chapter with
respect to its use in the Crosscheck system.

Abstract interpretation formally defines a way to generally reason about
certain aspects of the program using technique which can be informally
described as partial (or approximative) execution.

This technique provides excellent formalism for a wide variety of static
analysis which due to the nature of abstract interpretation partially
overlaps with problems which using other means would be deductible
only using dynamic analysis techniques. It's biggest drawback is that the
abstract interpretation can be slow, memory demanding and for certain
languages the construction of rules and transitions for the abstract
interpreter can be very hard.

Therefore, based on [Cook08] the xIL has been designed with the
abstract interpretation's needs in mind to allow relatively simple
semantics and interpreter construction.

5.1 Basic principles
The basics of abstract interpretation will be demonstrated on a classical
static analysis problem – the constant propagation23 [Muller05]. At first
we need to specify the domains for variables. These domains are subsets
of all possible values the variable may hold selected with respect to the
problem one wants to solve. These domains must be ordered to form a
lattice, which for this particular problem is very simple and is shown in
the following figure.

23The problem is to decide which variables can be replaced with constants, which yields
much faster and smaller code.

- 43 -

In the lattice, the capital T corresponds to any, or unknown value which
means that the value may be anything from defined range of the type and
{} represents no value which means that no value has yet been set to the
variable. Particular numbers corresponds to constants with the given
value.

Illustration 6: Constant Propagation Domain Lattice

When the domain lattice is finished we need to redefine all operations
and their outcomes to work with the already defined domains. Assuming
the simple programming language has only three operators, =
(assignment), + (addition) and – (subtraction), their tables are displayed
below (x and y means any constant values):

= {} x T + {} x T - {} x T

{} ! x T {} ! ! T {} ! ! !

y ! x T y ! x+y T y ! x-y T

T ! x T T ! T T T ! T T

Table 11: Operator tables for constant propagation

The operator tables show the output domains of the operations (left
operand in rows, right in columns). Each cell defines the outcome domain
and ! denotes invalid operation (the demonstration language is
dynamically types as is xIL24). Apart from unapproved results it is clearly
visible that assignment of constant and addition and subtraction of a
constant are the only operations that result in constant outcome.

Additional operators including relational operator must be also specified
in the same fashion. Clearly comparison of two constants can be correctly
evaluated, comparison when any of the operands is in domain T will
result in either true, or false, i.e. in T (we are treating boolean values as
integers as does xIL).

When all domains and operators are defined we can proceed to construct
the abstract interpreter which is very similar to classic interpreter. There
are however some significant differences:

24For languages like C/C++ replace ! with T's to obtain correct semantics.

- 44 -

{ }

0 1
8

T

...

1. All operations are performed in already defined abstract domains,
not the concrete values.

2. Particular code block is executed repeatedly only if its last execution
changed domain of any variable.

3. When two (or more) possible outcomes of a control flow are
possible, both must be interpreted in parallel (this makes abstract
interpretation quite demanding).

4. This leads to possible situations where a variable may be in two
states at once. This nondeterminism is solved using the domain
lattices.

5. A notion of reachability, i.e. if during the execution at one point a
variable can have more values, their upper bound should be used
instead.

To show the principle of the abstract interpreter, the following code will
be examined according to the above defined rules:

1 i=5
2 j=10
3 k=i+j
4 while (i<j) {
5 k=k+i
6 i=i+1
7 }

Text 22: Constant propagation example

The process of abstract interpretation is illustrated in the following
figure:

1 i=5 i=5,j={},k={}
2 j=10 i=5,j=10,k={}
3 k=i+j i=5,j=10,k=15
4 while (i<j) { 1 1 T
5 k=k+i i=5,j=10,k=20 i=5,j=10,k=T (20,26)
6 i=i+1 i=6,j=10,k=20 i=T,j=10,k=T (5,6)
7 }

Text 23: Abstract Interpretation

The above example displays the first stage of abstract interpretation,
domains (after the interpretation of current line) are shown in the right
column. After the first iteration of the cycle the domains of k and i are
changed to T (upper bound of first and second time pass). Therefore in
the third iteration of the cycle the result of the condition can be anything
(indicated by domain T) and thus the cycle must both be and not be
taken. One branch will finish immediately and the other will pass the
cycle body once more only to discover that no domains were changed and
therefore terminates too.

The final result of (i=T,j=10,k=T) shows that only the variable j can be
replaced with constant 10. The optimized code is displayed below:

- 45 -

1 i=5
3 k=i+10
4 while (i<10) {
5 k=k+i
6 i=i+1
7 }

Text 24: Sample program after constant propagation

Although the results shown in this example can be obtained by using
much simpler techniques (for example counting writes to particular
variables, variable with only one write of defined value can be replaced
by constant), abstract interpretation allows greater precision (limited
only by the number and organization of the domains theoretically
converging to full interpretation). The last example in this chapter, while
escaping the detection by the simpler method will still be updated using
abstract interpretation, while the above presented method would
consider both k and j as true variables.

1 function test(i) { i=T,j={},k={}
2 j=10 i=T,j=10,k={}
3 k=5 i=T,j=10,k=5
4 if (i<10) { 0 1
5 k=j-5 i=T,j=10,k=5
6 }
7 j=k-j i=T,j=-5,k=5 i=T,j=-5,k=5
8 }

Text 25: More complicated constant propagation

The above example also shows another property of abstract
interpretation – careful inspection of the results shows, that abstract
interpretation actually simplified the code (all expressions modifying
constants can be left out) during its single pass.

5.2 xIL Abstract Interpretation
The main disadvantage of abstract interpretation is that it may lead to
very complex structures and superlinear complexity due to its
nondeterministic nature. Therefore the algorithm of abstract
interpretation used in Crosscheck has been slightly modified so that it
still performs correctly in the context of plagiarism detection yet remains
linearly complex.

This speed-up has been achieved by ignoring multiple jump instructions
in xIL and introducing context-aware operator tables (i.e. operation may
have different results depending on the interpreter context. The fact that
multiple instructions are ignored means that at a particular line a jump
instruction can be followed only once, thus limiting the passes of any
cycle to 2. Additionally context sensitive operators allows less precise
evaluation25 of statements inside loops to compensate.

Also xIL interpretation treats inparallel blocks as if they are not really
performed in parallel, but rather sequentially. This assumption is sound
provided either of the two following rules are met:

25Less precise in this context means with weaker supremal operator.

- 46 -

1. The inparallel blocks are mutually exclusive, which means that at
the same level if one inparallel branch is taken the others are not.
This means that if the branch contains any assert instructions, they
will be evaluated to true,

2. or that the branches are data independent, e.g. if one branch reads
certain variable, no other branch can write to it and no two
branches can write to one variable.

These rules are actually a generalization of rules for safe parallel
execution [Tvrdik00]. It is not surprising that xIL meets both of the
criteria (inparallel blocks are either used to code mutually exclusive
branches (if, elif, etc.), or to parallelize code (which can be done only if no
data hazards are present). At the end of each inparallel block a
supremum of each branch execution is computed for each variable.

The following example shows simple xIL code with a cycle and an if
clause to demonstrate interpretation process. Additionally the above
mentioned operators are updated in a way that when any operation is
performed inside the loop which takes into account any uncertain
variable, it's result is also uncertain (i.e. equal to T) and that any
evaluation which reads and writes into the same variable also sets its
abstract value to T:

 1 eval v1=1 (v1=1,v2={})
 2 eval v2=0 (v1=1,v2=0)
 3 sequence: (v1=T,v2=0)
 4 inparallel:
 5 sequence:
 6 assert v1>2 False maybe True
 7 eval v2=v1+2 (v1=T,v2=T)
 8 sequence:
 9 assert v1<=v2 True maybe True
10 eval v2=0 (v1=1,v2=0) (v1=T,v2=0)
11 assert v1<10 True maybe True
12 eval v1=v1+1 (v1=T,v2=0) (v1=T,v2=T)
13 jump 3 Taken not taken

Text 26: xIL Abstract Interpretation Example

Clearly the classic abstract interpretation would have taken the jump at
line 13 at least once more and it is not hard to imagine code that would
take much more iterations to process correctly.

- 47 -

- 48 -

6 xIL Code Analysis6 xIL Code Analysis

After the code is transformed from the source language into the xIL
several static analysis tests are performed on the code in order to
determine its most important and distinguishing features. While they are
performed during only one abstract interpretation analysis in Crosscheck,
they are explained separately for their better understanding. This chapter
describes the most significant of them.

6.1 Code Importance
Code importance is a new concept developed for Crosscheck and is
defined as a function that assigns to each line of code an integer
representing the importance of that particular statement. The greater the
number the greater the importance of the code line.

Although the code importance is computed only for the xIL program, code
importance of lines in source programs can be easily calculated as sum of
importances of all xIL code lines which were generated during the
translation of the particular source code line. To remain fair proportions
meta instructions are excluded from the summation as their amount per
translated statement is arbitrary and depends on the statement's
structure rather than its importance.

Code importance also does not have any upper bound, only the lower
bound is defined to be 0. Such score indicates that the line can be
removed from the code without changing the semantics of the program.

Code importance is computed during the abstract interpretation and does
not require any domains and operator specifications. It uses the following
rules to determine the final importance:

Rule Importance Calculation

eval v = ?
exec (?):v

These instructions writes value to the
variable v. Every time a variable is being
written the location of the instruction is
remembered.

- 49 -

Rule Importance Calculation

eval ? = ?v?
exec(?v?):?
call v(?):?
call ?(?v?):?
assert v ? ?
assert ? ? v

Instruction which read from a variable will
increase the importance of instruction which
has set the read variable by the number of
reads.

eval v = ?v?
call v(?):v
call ?(?v?):v
exec (?v?):v

Any instruction that both reads and writes
into the same variable will also remember the
last instruction to write to the variable.
Whenever its importance is increased, the
importance of the original instruction is also
increased.

call fnc(?):v
…
return w

In the return and call instructions the address
representing last change of variable w is
remembered also for the variable v in the
caller's context.

call fnc(?):? Call of a determined sequence multiplies the
importance of that sequence by two.

call ?(?):? Call to unknown sequence (determined by
non constant variable) multiplies the
importance of any references sequences by
two.

jump forward Jump only

jump backward Each jump (indicating taken cycle) multiplies
all instructions from that jump target address
to the jump itself by two. If there are any
function calls or another backward jumps in
the path, their rules are also applied.

Table 12: Code Importance Analysis Rules

6.2 Code Reachability
Generally speaking, any code with importance equal to zero is not
reachable in a sense that such a code is not only unimportant but can be
omitted completely without any loss of semantic precision. The following
example shows only a few examples of unreachable statements in Python
programming language with their brief explanations:

1 def fnc1(x): # this function is never called
2 print “I am function 1”
3 x=x+3 # moreover value from this expression is never used
4
5 z=4 # this expression's value is lost at the next line
6 z=6 # ...without being used previously
7 if (z<0): # and since z is a constant, this would never happen
8 print “z<0”

Text 27: Code Reachability Example

- 50 -

Additionally, when a function pointer is called, the pointer may either be
fully specified in which case the respective sequence is called as would
happen with any immediate sequence call, or multipliers of all
instructions inside all referenced sequences are updated. This method
may result in slightly higher importance values for pointered function.
However, in classic programs such functions are usually callbacks, or
dynamically selected functions both of which are usually very important
itself.

As was already mentioned in previous chapters, any unreachable code
automatically classifies the whole submission as plagiarized or at least
highly suspicious.

6.3 Variable (not constant) Propagation
The third most important Crosscheck's analysis is the variable
propagation. The test is called variable propagation since xIL does not
have the notion of constants (immediates cannot be call or exec
parameters, nor can they be returned from a sequence. They can only be
evaluated to variables which in turn can be passed). This system was
designed to filter any constants (either language specific or literal) into
variables which can then be analyzed.

Each variable has a constant flag which means that the variable has been
assigned value only once (and fits in the concrete domain). At the end of
the analysis all constant variables are examined and their importance
(importance of the constant variable is clearly the importance of the
single line evaluating its value) is summed up according to their values.
This results in an ordered list of constant values (not variables) and their
importances, which is stored together with the submission for later
analysis.

6.4 Program Flow Analysis
The last of the performed analyses is the program flow analysis. This
analysis examines the program run (sequence of instructions in their
execution order) and based on its statistical properties then creates its
output string which is forwarded to the comparison engine.

The output string can be modified using various settings for better
performance and/or efficiency. Some portions of this setup may be
determined automatically by Crosscheck. This feature is discussed in
greater detail in the next chapter.

In its most common form the output string is a linear representation of
the program flow of the more important instructions. Additionally
variable names and immediate values are all replaced with single letters
as are the instructions.

- 51 -

6.5 Abstract Interpretation Specifications
While the general issues involved with abstract interpretation of xIL used
in Crosscheck has been stated at the end of previous chapter, this chapter
introduces their implementations and particular details.

6.5.1 Contexts
The code importance analysis distinguishes two contexts – normal and
cycle context. Cycle context is active from the time a backward jump is
taken till that exact jump (instruction address) is reached again. During
the cycle mode different abstract domain lattices are used and also the
rules for importance assessment are slightly changed.

Each instruction inside a loop is flagged so that the smallest possible
importance increase in the future will be 2, not 1 (hence it's importance
will be twice as high). The lattices used inside the loop are more general
than the normal ones to compensate for the fact that each jump is taken
only once during the abstract interpretation.

6.5.2 Abstract Domain Lattices
Although the abstract interpretation formally requires the variable to
have a value from only one lattice, in Crosscheck a value is characterized
by a vector of abstract values. Each operator is then defined for each of
the vertices in the value vector.

The first part of the value vector is represented by the following lattice:

The notion of the lattice is only an upgrade of the constant propagation
lattice presented in the previous chapter. Not only are we interested in
the actual value of the variable (to determine whether it should be
included into the variable propagation analysis), but we also need to

- 52 -

Illustration 7: Abstract Domains Lattice

T

0/False

1

- +

-1 -2 1 2inf inf

{}

... ...

know as precisely as possible the results of boolean expressions in assert
instructions to determine the control flow.

In the following tables as well as in the lattice above 0 or False
corresponds to the known value of 0. x+ corresponds to the known
positive integer value, x- is the known negative value. + and – are
unknown positive and negative values respectively. Bold 1 represents
unknown value different from zero and T represents the universe, i.e. any
integer value, positive, negative, or even a zero.

Additionally any string is represented as a bold 1 with the exception of an
empty string which translates to 0.

Abstract operator transitions are defined in the following tables (only the
interesting operators showing some concepts are illustrated).

Tables for relational operators are defined similarly exploiting the fact
that positive number is always bigger than negative, etc.

+ {} 0 x+ + x- - 1 T - {} 0 x+ + x- - 1 T

{} ! ! ! ! ! ! ! ! {} ! ! ! ! ! ! ! !

0 ! 0 x + x - 1 T 0 ! 0 x + x - 1 T

y+ ! y x+y + x+y T T T y+ ! -y x-y T x-y - T T

+ ! + + + T T T T + ! - T T - - T T

y- ! y x+y T x+y - T T y- ! -y x-y + x-y T T T

- ! - T T - T T T - ! + + + T T T T

1 ! 1 T T T T T T 1 ! 1 T T T T T T

T ! T T T T T T T T ! T T T T T T T

* {} 0 x+ + x- - 1 T % {} 0 x+ + x- - 1 T

{} ! ! ! ! ! ! ! ! {} ! ! ! ! ! ! ! !

0 ! 0 0 0 0 0 0 0 0 ! ! ! ! ! ! ! !

y+ ! 0 x*y + x*y - 1 T y+ ! 0 x%y T x%y T T T

+ ! 0 + + - - 1 T + ! 0 T T T T T T

y- ! 0 x*y - x*y + 1 T y- ! 0 x%y T x%y T T T

- ! 0 - - + + 1 T - ! 0 T T T T T T

1 ! 0 1 1 1 1 1 T 1 ! 0 T T T T T T

T ! 0 T T T T T T T ! 0 T T T T T T

- 53 -

& {} 0 x+ + x- - 1 T | {} 0 x+ + x- - 1 T

{} ! ! ! ! ! ! ! ! {} ! ! ! ! ! ! ! !

0 ! {1} 0 0 0 0 0 0 0 ! 0 {1} {1} {1} {1} {1} T

y+ ! 0 {1} {1} {1} {1} {1} T y+ ! {1} {1} {1} {1} {1} {1} T

+ ! 0 {1} {1} {1} {1} {1} T + ! {1} {1} {1} {1} {1} {1} T

y- ! 0 {1} {1} {1} {1} {1} T y- ! {1} {1} {1} {1} {1} {1} T

- ! 0 {1} {1} {1} {1} {1} T - ! {1} {1} {1} {1} {1} {1} T

1 ! 0 {1} {1} {1} {1} {1} T 1 ! {1} {1} {1} {1} {1} {1} T

T ! 0 T T T T T T T ! T T T T T T T

Table 13: Operator tables

Another important part of the domain vector is the indicator of the
purpose of the variable which is used to determine possible variables for
the variable propagation analysis. The lattice for this abstract domain has
states corresponding to the following values:

• Written – variable has been written, but not read yet. This state in
final analysis indicates unimportant variable which may be left out.

• Read – This indicates that the variable has not only been set, but
also at least one read operation has been performed. Therefore the
variable has its meaning. At the end of the analysis this state means
that the variable is a candidate for variable propagation depending
on its importance.

• ReWritten state denotes variable which has been written and read
and then written again, but with defined value not dependent on its
previous value. While this would indicate that the variable might be
considered for constant propagation (different constants in different
regions) for Crosscheck's purposes this variable is treated as a
normal one (usually these variables come from bad programming
style, not plagiarism techniques)

• Updated variable is variable either depending on another variable
whose value is unknown, or a variable that has been updated (i.e.
rewritten with value depending on its previous value (the simplest
example being the expression v=v+1). This state indicates normal
variable which should not be considered for variable propagation.

And the illustration of that lattice is in the diagram below:

- 54 -

Illustration 8: Variable Propagation Domain Lattice

Obviously the only instructions capable of changing the value of this
domain are evaluations, calls and execs (all of them writing to the
particular variable). The following table shows the changes in the
variable state based on its previous value and the type of instruction
used:

State eval v=?
call ?(?):v
exec (?):v

eval v=?v?
call v(?):v
call ?(?v?):v
exec (?v?):v

eval ?=?v?
call v(?):?
call ?(?v?):?
exec (?v?):?26

{} W ! !

W RW U R

R RW U R

RW RW U RW

U U U U

T ! ! !

Table 14: Variable propagation rules

Now when all the formal parameters of the abstract interpretation have
been specified, the following chapter demonstrates the abstract
interpretation and analysis on slightly larger code.

26And all other instructions reading from the variable v.

- 55 -

{}

R W

RW

U

T

6.6 Analyses Example
For better understanding the Crosscheck's analyses are explained on
language C, rather than its proprietary xIL language. Documentation on
the analysis performed on xIL code in greater detain can be found in
source code documentation.

Also note that the examples given in this chapter does not fully illustrate
the potential of the analysis due to their size restraints. The more
complex and structured the code is the greter impact the analysis has.
However even mid-sized C programs are translated into xIL programs
with hundreds of lines and their demonstration in this report is
unfeasible27.

6.6.1 Simple Example
For the purposes of this explanation, consider the following simple C
code:

 1 void unnecessaryFunction() {
 2 fprintf("Unnecessary function");
 3 }
 4 void classicFunction() {
 5 fprintf("Classic function");
 6 int x=67;
 7 return x;
 8 }
 9 void functionInCycle(int j) {
10 return j-2;
11 }
12 int main() {
13 int z=classicFunction();
14 if (z<10) {
15 z=z+45;
16 } else {
17 printf("Always executed");
18 }
19 int y=z;
20 int c=0;
21 for (int i=0;i<10;i++) {
22 c=c+functionInCycle(i)+z;
23 }
24 return c;
25 }

Text 28: Analysis Example - C code

In this size, even to the naked eye some of its properties are easily
spotted – for instance the fact that function unnecessaryFunction() is
never used and can then be left out completely, or that the variable y at
line 19 server no purpose at all. On the other hand, the observation that
value of the variable x set at line 6 and then passed to z in the main
function can be replaced with constant is not as trivial. Knowing this, it is
easy to reason that the positive clause of if statement at line 15 will never

27These more complex demonstrations can be found on the accompanying CD.

- 56 -

be executed (if it would be executed, z could not be replaced with a
constant).

After the first phase, Crosscheck generates the xIL code, which is shown
for future reference in the text below (for shorter code insignificant
metainstructions have been removed):

 2 jump 37
 3 meta function "unnecessaryFunction"
 5 sequence:
 7 eval V2="Unnecessary function"
 8 meta name "fprintf"
 9 exec (V2)
11 meta function "classicFunction"
13 sequence:
15 eval V4="Classic function"
16 meta name "fprintf"
17 exec (V4)
22 eval V5=67
24 return V5
26 meta function "functionInCycle"
30 sequence(V7):
32 eval V8=V7 2 +
33 return V8
35 meta function "main"
37 sequence:
42 call 13():V10
43 eval V9=V10
45 eval V11=V9 10 <
47 inparallel:
48 sequence:
49 assert V11!=0
52 eval V9=V9 45 +
53 sequence:
54 assert V11==0
57 eval V13="Always executed"
58 meta name "printf"
59 exec (V13)
64 eval V14=V9
69 eval V15=0
76 eval V16=0
77 sequence:
79 eval V17=V16 10 <
80 assert V17!=0
83 call 30(V16):V18
84 eval V15=V15 V18 + V9 +
86 eval V16=V16 1 +
87 jump 77
89 return V15

Text 29: Translated Analysis Example

Comparison of the translated code with the original reveals that the
following mapping between xIL and C variables is used (in order of
appearance):

- 57 -

C name xIL name

x V5

j V7

z V9

y V14

c V15

i V16

Table 15: C to xIL Variable Names

Other variable indexes in xIL are used for auxiliary variables as xIL is
unable to call or execute subroutines with immediate parameters.

6.6.2 Interpretation
When the code is translated it is interpreted. The interpreter produces
two significant outcomes:

1. Sequence of instruction in the order of their execution (abstract
interpretation does not consider meta instructions to the flow). Each
of these instructions has also associated its importance. And
obviously all these importances are nonzero positives.

2. Record of all used variables, their abstract domains and their
importances.

The interpretation itself reveals some of the properties of the code,
notably it discovers that xIL line 52 (corresponding to C line 15) will
never be executed. While this example is fairly trivial, due to clever
domain allocation the interpreter will be able to detect also more
complicated examples where the control variable is not in specific
domain, as shown in the following fragment:

1 def fnc(i):
2 if (i<0):
3 return 10
4 else:
5 return 0
6 i=fnc(13)
7 i=i+56
8 if (i<0):
9 print “unreachable code”

Text 30: More complicated dummy code

While the abstract interpretation does not recognize uncalled functions in
itself, due to the fact that these functions will not be executed, their
importance will remain 0 which would make them easily detectable by
the upcoming analyses.

The abstract interpretation can also deal with function pointers. If the
function pointer value is from a specific domain the appropriate function

- 58 -

is called as if the address would be immediate (this is likely to be the
most prevalent case). However if the function pointers are from other
domains (+,-,1,T) their value cannot be determined. In this case all
functions that have ever been referenced in the given context are called
in parallel, which decreases the importance metrics.

6.6.3 Variable Propagation Analysis
After the abstract interpretation has finished, the variable propagation
analysis commences. It searches over all variables used and determines
whether they are candidates for constants (state R), or never used
variables (state W). If a variable is never used, it's initializing instruction
is also removed (i.e. its importance is set to 0). Although many of the
auxiliary variables are also candidates for constants (they were initialized
and read only once after which they are never used again), their
importance is very low (only one read) and are therefore omitted.

The following table represents the states, abstract values and write
points of the C variables28 (the write points are in C lines although in
reality these parameters are in xIL terms). Important lines are described
in the test as well:

 4 void classicFunction() {
 5 fprintf("Classic function");
 6 int x=67;
 7 return x;
 8 }
 9 void functionInCycle(int j) {
10 return j-2;
11 }
12 int main() {
13 int z=classicFunction();
14 if (z<10) {
15 z=z+45;
16 } else {
17 printf("Always executed");
18 }
19 int y=z;
20 int c=0;
21 for (int i=0;i<10;i++) {
22 c=c+functionInCycle(i)
 +z;
23 }
24 return c;
25 }

x writePoint to 6
x importance+1

j writePoint to 21
j importance +1

z writePoint to 6, importance +1
z importance +1

y writePoint to 19, z importance+1
c writePoint to 20
i writePoint to 21, importance +4
c writePoint to 22, importance +2
z importance +2 (cycle)

c importance +1

Text 31: Variable Analysis in Code

C name Importance State Value Write Point

x 6 R 67 6

j 2 U + 21

z 4 R 67 6

28The table for xIL would slightly differ due to auxiliary variables and redundant reads.

- 59 -

C name Importance State Value Write Point

y 0 W 0 19

c 3 U + 22

i 4 U + 21

Table 16: Variable Propagation Analysis Results

This analysis found that variable y is assigned but never used. Therefore
the importance of line 19 in C (line 64 in xIL) has been set to 0.

Additionally variables x and z are identified as possible constants (their
state is R and their value is from a specific domain). The analysis thus
continues producing the list of possible constants ordered by importance.
In this simple example the only constant is 67. However one can easily
imagine more complex output, such as the one shown in the table below:

Value Importance Variables

45 75 V1,V10,V34,V56,V80

2.13 34 V4,V11,V91

128 12 V2

2 6 V45

Table 17: Imaginary Variable Analysis Results

The table lists important constant values that have been found ordered by
their importance and accompanies by referencing registers. Therefore
whenever a variable from the right column is met in the xIL code it can
be replaced with immediate value in the left column.

6.6.4 Reachability Analysis
After variable propagation helps identifying remaining unreachable or
dummy code, reachability analysis is called to find overall information
about the submission. Reachability analysis computes the importance of
source lines and determines larger important parts of the xIL flow code.
The reachability analysis is used by the flow analyzer to produce
optimized string.

These parts can be also used to hash th submissions into a database for
their future use and effective search in later submissions of the same
topic (only pieces of the important code will be searched assuming that
submission that does not have the important parts is clearly an original
work)29.

29This feature is not yet implemented and reachability analysis only provides support
for future improvements.

- 60 -

Any unreachable code found is reported and implies that the submission
is flagged as plagiary (even if later comparison would fail to identify the
original work).

Crosscheck's visualization of the reachability analysis is displayed below
(importance shown from white (unreachable) to black (most important
code). While some lines are simply not visited translated to xIL and
therefore cannot gain any importance (displayed in white), others are
translated to xIL and yet are not important (displayed in red). The latter
constitutes the unreachable code:

 1 void unnecessaryFunction() {
 2 fprintf("Unnecessary function");
 3 }
 4 void classicFunction() {
 5 fprintf("Classic function");
 6 int x=67;
 7 return x;
 8 }
 9 void functionInCycle(int j) {
10 return j-2;
11 }
12 int main() {
13 int z=classicFunction();
14 if (z<10) {
15 z=z+45;
16 } else {
17 printf("Always executed");
18 }
19 int y=z;
20 int c=0;
21 for (int i=0;i<10;i++) {
22 c=c+functionInCycle(i)+z;
23 }
24 return c;
25 }

Table 18: Reachability Analysis Output

Based on the algorithm for code importance and reachability it is not
surprising that the most important code has been found on lines 21 and
22 that are part of a cycle, followed by the function functionInCycle()
which is vital for the cycle's body and the function determining the value
of the variable z (which has been revealed to be a constant).

For larger code chunks, the importance of source lines is then copied to
all xIL lines translated from that particular line, because pure xIL
importance tends to be defragmented over the core evaluations.

6.6.5 Program Flow Output
The final analysis is the program flow analysis and consequent output.
The analysis performs basic statistical examination of the xIL code and its

- 61 -

importance determining minimal and maximal values, average, and
various percentiles both for the code and for the constants.

After the analysis the program flow obtained from abstract interpretation
is the tokenized into a single condensed string which is ready to undergo
the final comparison part.

The following rules are used in the tokenization:

Input Output Comments

assert Ar_operator_v

bind Br1_r2

call Caddr_args_results
Caddr(args):results optional

eval E
Ev{operators}
EEv{values}
EEv{expression}

optional consecutive30

optional operators only
optional values only
optional whole expression
(postfix, infix)

exec Xargs_results
XE(args):results optional

jump J only backward jumps

return Rargs
R(args) optional

sequence S optional

inparallel P optional

variable v
x (constant)
(constant)

optional
optional constant value

immediate x
(value) optional real value

Table 19: Output Flow Rules

And the following figure shows the full output of the presented example
in 100th and 80th percentiles with constant replacement (beginnings of
instructions are displayed in bold):

S{Cx:vS{EvxX(v)EvxR(v)}EvvEvvx<P{S{Av!=x}S{Av==xEvxX(v)}}EvxEvxS{Evvx<
Av!=xCx(v):vS(v){Evvx+R(v)}Evvv+v+Evvx+Jx}S{Evvx<Av!=xCx(v):vS(v){Evvx+
R(v)}Evvv+v+Evvx+Jx}R(v)}

Illustration 9: Full Program Flow Output at 100th percentile

{{EvxEvx}EvvEvvx<{{}{Evx}}EvxEvxS{Evvx<Av!=xCx(v):vS(v){Evvx+R(v)}Evvv+v+
Evvx+Jx}S{Evvx<Av!=xCx(v):vS(v){Evvx+R(v)}Evvv+v+Evvx+Jx}}

Illustration 10: Full Program Flow Output at 90th percentile

30Consecutive evaluation instructions may be omitted if required.

- 62 -

7 Comparison7 Comparison

Comparison is the last stage of the plagiarism detection. While the
previous phases analyzed only single submission and therefore did nout
output any information directly relevant for the originality assessment
(with the exception of reachability analysis), the final comparison only
compares the submissions amongst themselves on one by one basis.

During the past I have experimented with various comparator algorithms
(notably the Running-Karp-Rabin Greedy String Tiling [Wise93] which has
been used in many other plagiarism detection tools, including the Jplag).
Unfortunately these algorithms resulted in an extremely high number of
false positives.

Therefore the current version of Crosscheck uses another algorithm
which is a simple modification of the well known string folding algorithm
that has been used in many domains (notably the stringology and
bioinformatics31).

The updates of this algorithm ensure that Crosscheck will be able to
detect also more complex code changes such as the statement
reordering.

7.1 Basic Algorithm
The extended description of the algorithm can be found in [Kolar04]. In
general the algorithm computes the best fold of string one (length m) on
string two (length n) (and vice versa). This is obtained using dynamic
programming and array m*n. This array is initially filled with 0 and rule
for it's update is:

M x , y=max M x−1, y ,M x , y−1 ,M x−1, y−1match  s1x , s2 y

Where s1 and s2 are the two strings, M is the matrix, max() is a standard
maximum function and match() is the matching function defined below.

The advantage of the updated algorithm is that it allows folding of
parallel strings (these strings differ from normal strings so that each
position of the string is either a single character, or a sequence of parallel

31String folding is used to determine RNA, mRNA or protein folding.

- 63 -

characters). Parallel strings are computed by the comparator from the
given program flow and known program structure. The match() function
is defined on these parallel strings in the following way (it is therefore
only an extension to classic matching function with boolean result):

match a ,b =∣a∩b∣

Where multiple items of the same value are allowed in the intersection
(intersection on aabac and dbaa is baa in no particular order). This
algorithm can be further enhanced with the idea that when inside parallel
parts of the string the score is increased for each parallel line separately
so that (aab|bba) and (aba bab) will not match at all whereas in the
simple version they are total match.

The output of this comparison is the M matrix with filled values, maximal
match and computed lengths of the inputs s1 and s2 (their compared
lengths are not equal to their nominal lengths as some characters are
required to code the parallel structure).

7.1.1 Diagonal Analysis
Although the above presented algorithm is fairly accurate for classic
submissions, it has one crucial disadvantage as it is not capable of
matching misplaced statements apart from those parallelized before (if
and switch statements in general). Consider for example an original
calling two functions A and B in this order and the plagiary that calls
them in reversed order (assuming this transition is acceptable, i.e. there
are no dependencies between these functions). This situation can be
graphically demonstrated by the folding of two strings,
aabbbbbbbccccccccaaa and aaccccccccbbbbbbbaaa. Note that while
these strings (both have length 21) are composed of equal characters,
their c and b portions are misplaced. Traditional folding results are
shown in the figure below (the darker the color the higher fold):

- 64 -

Illustration 11: Reordered Code Match

Because the final match is only 14 characters, which is less than 68% of
the original length such a submission (in larger scale) would hardly be
reported as plagiarized. To compensate for this situation, Crosscheck
employs another upgrade to the algorithm, the diagonal analysis.

The matrix M is analyzed once more, to find the diagonals (i.e. lines along
which the s1 and s2 match). Vertices on these diagonals are then
replaced with the length of the diagonal (the number of consecutive
matches) or with 0 none or only single match in a row occurs32. The
output of this phase is shown in the following illustration:

Illustration 12: Diagonal Analysis of Reordered Statements

The diagonals are then projected on the x and y axes in order to
determine the tiling of the strings using the following rule:

T i=max {t /D i , j∀ j }

Where Ti is the tiling of i-th parallel character and Di,j is the matrix of
diagonal analysis values. The final match is then calculated as number of
parallel characters with are tiled (i.e. T i0) and the likelihood of that
match, which is average length of tile used (which is simply the average
value of Ti). For the presented simple example the match is 100% which is
excellent result.

The overall complexity of the algorithm is calculated below:

P=∣s1∣×∣s1∣=m×n=n2
T=2⋅n2 =n2

32Extremely small diagonals are not contributing to the result.

- 65 -

7.2 One to One Comparison Strategy
To determine plagiarized submissions Crosscheck must compare each
submission with all others one by one. This is a lengthy process and
increases the overall time complexity to n4 . This is the basic idea
behind both human language and programming language plagiarism
comparators.

However, the nature of programming language submissions and their
cheating is rather different from the natural languages domain where this
algorithm has been developed. While cheating in natural languages is
usually done by paraphrasing other (sometimes not even topically close)
sources (and paraphrasing many of them to produce the resulting essay),
this technique is useless in computer languages due to the following
facts:

1. Unlike essays, programming assignments are usually well defined
with little or no space for creativity and originality.

2. Due to the much more restrictive syntax of programming languages,
copying various algorithms from different sources requires great
care to put them together in working order to produce the desired
outcome.

Therefore most of the plagiarism in programming languages is done by
applying modifications to only one source. This enables Crosscheck to
slightly decrease the number of comparisons required. When a
submission is found to be plagiarized, both the submission and its source
are marked as plagiarized and none of them is checked against other
submissions in the batch. Additionally these submissions are moved
towards the beginning of a list from which new possible originals are
drawn when checking the other submissions (as it is likely that one
source has more then one copies).

The illustration below shows the difference between full and reduced
search in a set of 30 short programs. Red squares represents plagiarized
submissions (red square (x,y) means that submission x is plagiarized from
submission y) and green shades reflect similarity of the submissions
below the plagiarism threshold, which in this situation has been set to
90%:

- 66 -

Using this technique the number of comparisons required has been
reduced to approximately 63% in the test set. Another possible
enhancement is to assume that when source A has been suspected
plagiary when compared with source B, then source B automatically is a
plagiary too. While this assumption may seem sound at the first glance,
one may easily imagine a very long and a very short submission with the
short submission being composed only from parts of the larger
submission. Clearly the large submission is the original while the smaller
one is plagiary33.

33This can be safely assumed because Crosscheck's analyses eliminate redundant and
unreachable code, therefore the all code in the larger submission has its meaning.
The real example of such situation are two submissions, a QuickSort algorithm and a
full data structure of a complex list capable of being sorted using QuickSort
algorithm.

- 67 -

Illustration 13: Full and Reduced Comparison Visualization

- 68 -

8 Evaluation and8 Evaluation and
ResultsResults

This chapter attempts to evaluate Crosscheck's performance in two ways.
At first the goals of the project are stated with following discussion
regarding their completion. This is demonstrated on simple examples
targeted only on the single feature. The second part of the chapter then
deals with a supervised real world example in which a group of students
was asked to submit the same coursework with half of them being
instructed to cheat.

8.1 Crosscheck's Goals
Crosscheck's goals have been set as follows [Simecek08]:

1. The system must be able to handle variable and function renaming.

2. Capable of handling changes in function placement in the source
code.

3. Crosscheck must be able (at least to some extent) identify dummy
functions and variables (not used and not called ones)

4. The whole system must be easily extensible to allow processing of
new source languages.

8.1.1 Variable and Function Renaming
Clearly Crosscheck is virtually immune to renaming of any kind because
no names are preserved for the final comparison. However these can be
always reconstructed from the xIL code to allow the reporter to pinpoint
the changes.

Code altered only by means of renaming will be 100% compatible with
the original.

- 69 -

This feature is also fully supported by all but the simplest alternative
tools for plagiarism detection.

8.1.2 Function Placement Changes
Crosscheck is indeed immune even to these modifications as the program
flow analysis groups the compared code together by means of the
execution order, not the order they are defined in the source code. Hence
the original and the plagiary will be again 100% compatible.

This feature is also supported by the alternative tools, however some
more complex changes in the position may fool the comparators.

8.1.3 Dummy Functions and Variables
Even dummy functions and dummy variables can hardly fool Crosscheck.
In most circumstances the program flow and variable propagation
analyses either identify the unnecessary statements, or they are not
visited at all due to the abstract interpretation of the source code.
Programs trying to utilize this technique would most likely end 100%
compatible in the final comparison.

This is the first feature possible due to Crosscheck's various analyses of
the intermediate code and as such is not available in other tools for
plagiarism detection.

8.1.4 Extensibility
Crosscheck's excellency in the above mentioned areas is possible partially
as a trade-off in its extensibility. While adding a new language to other
plagiarism detection tools (such as Jplag) mostly consists only of writing a
relatively simple parser for that language, adding new language to
Crosscheck is much more complicated.

To add a new language a new language parser and compiler to xIL must
be developed. When the new language can be translated to the xIL all
other Crosscheck's parts can remain the same. Additionally the
complexity of the addition of a new language greatly depends on the
language itself. While the extension for Java language would be one of the
easier ones, addition of fully compatible C++ compiler to xIL is
enormously complex task. On the other hand the existence of the
intermediate language allows Crosscheck to possibly check for plagiarism
even across supported programming languages.

Aware of the problems associated with its extensions, Crosscheck
provides large SDK with many useful functions and template classes for
easier development of parsers and compilers to xIL. These are
documented in the source code documentation.

8.1.5 Additional Features
The powerful abstract interpretation in the heart of Crosscheck's
algorithm gives it additional resistance against another and even more

- 70 -

advanced plagiarism techniques. In general while some of these features
may be supported in other programs, Crosscheck's capabilities in this
areas are orders of magnitude greater.

Variable Propagation

Crosscheck is to some extent able to detect variables that are used only
as constants and replace them with their immediate values. These
important constant values can be also ordered by their importance and
added to the submission report. This allows to check not only whether
source code has been plagiarized but also if the important values are not
stolen, which may be desirable for tasks such as genetic algorithms
where careful setup of the important probabilities is crucial to the
algorithm's effectiveness.

Clever Dummy Code Insertion

Consider the following example:

1 int cleverFunction(int x) {
2 float z=0.5;
3 z=z**x;
4 if (z<0) {
5 // Large dummy code here
6 }
7 return z;
8 }

Text 32: Clever Dummy Code

Although it is not apparent, Crosscheck will correctly identify the dummy
code at line 5 as unreachable and would not include it in the program
flow output (although we know nothing about the variable x, we know
that z is positive and positive number to the power of any other number is
always positive, therefore cannot be smaller than zero). This code would
be 100% similar to its original without the dummy code.

No other plagiarism detection tool is capable of such detection and most
of them would be fooled by largely different submission size and its
fragmentation due to such code pieces.

Statement Reordering

Statement reoredering (e.g. changing positions of statements inside
functions) is one of the most advanced plagiarism techniques. Crosscheck
is able to battle this technique on two fronts – using the xIL
parallelization with inparallel instructions and diagonal analysis during
the final comparison.

While string tiling algorithms in other tools can also correct the
reordering, Crosscheck's algorithms work instruction wise which forbids
tiles to span over instructions which are not covered totally.

- 71 -

8.2 Coursework analysis
The following observation was taken on high school students learning
C/C++ for one year. Due to the fact that they are learning the language
voluntarily to prepare themselves for higher education they can be
roughly compared to freshmen university students.

8.2.1 Task Specification
A smaller task of finding way out of the maze has been selected to test
Crosscheck's possibilities because smaller programs poses theoretically
higher risks for the abstract interpretation as even small changes in the
program flow would result in a significant percentage of altered code.

Precise definition of the problem which was also given to the students is
displayed below:

Create a program that will solve the maze problem, i.e. determine if
there is a path from initial position to the gate of the labyrinth. The
maze can be of any size and is represented by integers, walls are
denoted by constant 100. The maze will always be bordered by walls,
therefore you do not need to check constraints during the algorithm.

The following functions (implemented in maze.h and maze.cpp) were
available to the students:

int** maze_getLabyringth(int size) which returns the generated
maze problem.

int maze_coordinateX() and int maze_coordinateY() which returns
the x and y coordinates of the actual position in the maze.

bool maze_walk(int dx,int dy) that performs the move in direction
specified by dx and dy (only moves orthogonal to main axes are allowed
and the person can move only one piece at a time). This function returns
true if the move was successful and false if there is wall in the desired
direction.

And finally bool maze_finished() returns true if the labyrinth gate has
been reached, otherwise return false.

The students were instructed to either develop an original solution, or
attempt to copy already existing solution in a way that would be
undetectable by the automated detector. They were not told about
Crosscheck's internal mechanisms, but they knew they would be facing
an automated system, not a human.

Additionally I have added another submission to the repository. This
contained insertion and selection sorts, i.e. a completely different
program of roughly the same size.

8.2.2 Preliminary Analysis
After the submissions have been collected they were manually reviewed
in order to identify their similarities which was possible due to their small
amount and sizes. This analysis is summarized in the following table and

- 72 -

determines the base of the supervised analysis of Crosscheck's
capabilities:

ID Copies Comments

1 6, 10 iterative modification 1

2 original work

3 8 recursive

4 sorts

5 9 iterative modification 2

6 1, 10 iterative modification 1

7 original work

8 3 recursive modification

9 5 iterative modification 2

10 1, 6 iterative modification 1

Table 20: Preliminary Analysis of the Submissions

Analysis of the submitted sources also revealed that most of the
techniques very fairly simple and mostly limited to simple refactoring by
the means of variable and function renamings. Some students altered,
added, or stripped comments and from time to time more clever methods
such as statement reordering have been used.

The most advanced form of plagiarism discovered was insertion of
dummy code into active procedures (submission 6) and function inlining
or extracting found in submission 10. Examples of both are provided
below:

41 case 0:
42 if (canWalkLeft(maze,x,y)) {
43 maze_walk(-1,0);
44 maze[x][y]++;
45 break;
46 }
47 if (false) {
48 maze=0;
49 maze+=1;
50 printf("Posunuju se na dalsi krok.") ;
51 }

Text 33: Dummy Code Insertion into the tested submission

- 73 -

10 case 0:
11 if(maze[x-1][y]!=100) {
13 maze_walk(-1,0);
14 maze[x][y]++;
15 break;
16 }

 6 bool canWalkLeft(int **maze,int x,int y){
 7 if (maze[x-1][y]==100) {
 8 return true;
 9 } else {
10 return false;
11 }
12 }
47 case 0:
48 if (canWalkLeft(maze,x,y)) {
49 maze_walk(-1,0);
50 maze[x][y]++;
51 break;
52 }

Text 34: Inlining or Extracting Functions

Notably all three submissions are from the same source which is clearly
visible even from their fragments already presented. However their
detection by classical techniques is very unlikely due to the fact that each
of these adds or removes relative large amounts of code (either used or
unused one).

8.2.3 Crosscheck's Results
Based on my experiences with former versions of Crosscheck I have
anticipated relatively large number of false positives and thus the
similarity ratio at which the submission is considered to be plagiarized
and should be reported has been set to 90%. All other settings has been
left at their default values (this means minimal code importance of at
least 2, constants replaced by their values, etc).

The best achieved results within this setup was either full, or partial
symmetric algorithm (e.g. each two submissions are tested and the
similarity between a and b is the maximum of their respective
similarities).

At first the final comparison algorithm, the diagonal analysis was tested
using its visualizations. Surprisingly the differences between match and
no match are visible even to the naked eye, as shown in the following
figure (mismatching pair at the top, matching below).

The are followed by the final table produced by the comparator. This table
shows percentages of similarity for each pair of submissions. This value is
also visualized using green shades for normal values and red shades for
suspected plagiaries). A submission is reported as plagiarized if it has at
least one red square either in a row, or in a column. Grey squares
represent skipped comparisons, in this case (fully symmetric) it's only the
main diagonal.

- 74 -

- 75 -

Illustration 14: Mismatching submissions (1,9)

Illustration 15: Matching submissions (1,6)

Illustration 16: Final Results

The final results show a remarkably well outcome of the analysis. The
original submission #7 was indeed marked as original, three major
clusters were also correctly marked (submissions {1,6,10} {3,8} {5,9})
and the submission #4 was clearly marked as unfit (notice the very low
similarity ratios with other submissions). Due to the redundant code in
submission #6 Crosscheck can even determine that this is likely not the
original, a feature unique among other plagiarism detectors.

On the negative side, the Crosscheck seems to identified two false
positives, namely the similarity between submissions 2 and 3 (92%) and
between submissions 3 and 6 (91%).

8.2.4 False Positives and Their Explanation
To explain the found false positives, we will look at the asymmetrical
version of the algorithm. This easily clarifies the second case because
while submission 3 is very similar to the submission 6 (91%), submission
6 cannot be less similar to #3 than it is reported at 17%. Such varying
results mean the only thing – submission 3 is much smaller than
submission number 6 (remember 3 and 8 are recursive) and because it
has many smaller parts similar with #6 is is indeed reported to be similar.
On the other hand, because #6 is way too large to be a copy of
submission number 3 and due to the fact that the matching sequences are
very small in length compared to the overall length of the submission, its
similarity result is almost opposite.

The second false positive is more interesting as the respective similarity
is 60%. Although it is not as high as the other 92% it is high enough not
to be dismissed by varying sizes. Closer look on the submissions' source
codes reveals that both are in fact recursive and although they seem to
be different, they share very similar portions, notably the recursion itself,
as shown in the following text (submission 2 on left):

- 76 -

33 return (walk(-1,0) || walk(0,-1)
 || walk(1,0) || walk(0,1));

 8 if(solve(maze,1,0)) return true;
 9 if(solve(maze,-1,0)) return true;
10 if(solve(maze,0,-1)) return true;
11 if(solve(maze,0,1)) return true;

Text 35: Recursive false positive

8.2.5 Possible Improvements
Although this situation is theoretically one of the hardest tasks due to the
extremely small programs and very precisely specified task and is thus
unlikely to occur in large submissions (where the same effort was taken
to cheat) it gives valuable hints for possible future improvements.

Notably the asymmetrical nature of the comparison should be exploited
so that only one value (that equally reflects both similarities) will be
issued for the pair. However to determine the exact way to achieve this
on unsupervised data would certainly require much more extensive
testing.

- 77 -

- 78 -

9 Conclusion9 Conclusion

Crosscheck implements in many ways novel approach to the plagiarism
detection in computer science programming courseworks. And while it
has definitely proven that its path is worth exploring, as every new
technology, Crosscheck is not error-free. This chapter attempts to assess
Crosscheck's current state and its possible future development.

9.1 Future Developlment
In the foreseeable future, Crosscheck might additionally benefit from the
following upgrades:

• Crosscheck would definitely benefit from more extensive testing on
larger data sets (preferably of supervised data) and improvements to
its xIL translator to fully meet standards of at least C/C++ and Java
languages.

• better reporters (classes visualizing the analysis results) to cope
with leading commercial products, such as turnitin.com

• while Python has proven to be excellent choice for the system itself
and allowed fast development and prototyping, its drawback is lack
of speed. Therefore reimplementation of bottlenecks (one by one
comparison, abstract interpretation) into C/C++ might greatly
speed up the whole application

• addition of other languages (Java, complete C++, Python, Pascal)

• integration into e-learning suite34

• as mentioned above also more extensive testing and evaluation
which should render new improvements to the existing algorithms in
order to soundly decrease the occurrence of false positives.
Additionally Crosscheck should also be benchmarked against other
plagiarism detectors so that it's accuracy can be compared.

• insertion of new stage that would utilize the important code
segments to faster search of multiple submissions in a database to

34This project is jointly developed by Tomas Nykodym and me.

- 79 -

determine most likely candidates for the one to one lengthy
comparison.

9.2 Comments
Due to huge problems with xIL translators, the initially favored idea of
unique intermediate language might be cost ineffective, or xIL can be
disassembled from another language (Micrsosoft Intermediate Language
in .NET, or assembler for gnu compiler). Although this change would
require significant modifications of the current code and limit the set of
possible languages to those supported by the used suite, only one
translator to xIL would immediately support most of today's practical
languages.

It might also be possible to change Crosscheck to be less accurate in the
abstract interpretation as the loss of some of its most advanced functions
seems of smaller practical value (such modifications would usually
require fairly complicated cheating). This would in turn simplify the
design of the translator and ease the Crosscheck's extensibility while
retaining some of its advanced functions.

Personally, I believe that this is the course of actions that could improve
Crosscheck and make it more competitive with other plagiarism detection
tools while retaining most of its unique features.

- 80 -

ReferencesReferences

[Aho06] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. Compilers:
Principles, Techniques, and Tools, Second Edition. Pearson
Education, Inc. 2006.

[Arwin06] Arwin, C., and Tahaghoghi, S. M. M. Plagiarism detection across
programming languages. Tech. rep., School of Computer Science
and Information Technology, RMIT University Melbourne, 2006.

[Burd02] Burd, E., and Bailey, J. Evaluating Clone Detection Tools for Use
during Preventative Maintenance. Proceedings of the Second
IEEE International Workshop on Source Code Analysis and
Manipulation, 2002.

[Carbone01] Carbone, N. Turnitin.com, a pedagogic placebo for plagiarism.
2001

[Churchill05] Churchill, L. Students: 2, turnitin: 0. Mc Gill Daily, 2005.

[Cook08] Personal communication with Byron Cook during Second
International School on Trends in Concurrency, Prague, June 22-
27,2008.

[Cousot77] Cousot, P. and Cousot, R. Abstract Interpretation: a unified
lattice model for static analysis of programs by construction
of approximation of fixpoints, POPL '77: Proceedings of the 4th

ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, 1977.

[Dick02] Dick, M., Sheard, J., et al. Addressing student cheating:
definitions and solutions, Annual Joint Conference Integrating
technology into Computer Science Education, 2002.

[Eckel00] Eckel, B. Thinking in C++, Prentice Hall, Inc. 2000.

[Faidhi87] Faidhi, J., and Robinson, S. An empirical approach for detecting

- 81 -

program similarity and plagiarism within a university
programming environment, In Comput. Educ. (1987), vol. 11, pp.
11-19

[Finkel96] Finkel, R., A. Advanced Programming Language Design,
Addison-Wesley Publishing Company, 1996.

[Foster02] Foster, A. L. Plagiarism-detection tool creates legal quandary,
The chronicle of Higher Education, May 2002.

[Grimes04] Grimes, P., W. Dishonesty in Academics and Business: A Cross-
cultural evaluation of Student Attitudes, Journal of Business
Ethics, February 2004.

[iParadigms07] Plagiarism – technology, iParadigms website,
www.iparadigms.com

[Jones01] Jones, E.L. Metrics based plagiarism motitoring, In proceedings
of the sixth Annual CCSC Northeastern Conference (2001)

[Kamiya00] Kamiya, T., Kusumoto, S., and Inoue, K. A Token-based Code
Clone Detection Tool - CCFinder and Its Empirical Evaluation.
Tech. Rep. Graduate school of Eng. Sci., Osaka University, Japan,
2000.

[Kamiya02] Kamiya, T., Kusumoto, S., and Inoue, K. CCFinder: a
multilinguistic token-based code clone detection system for
large scale source code. Graduate school of Eng. Sci., Osaka
University, IEEE Transactions on Software Engineering, volume 28,
2002.

[Kolar04] Kolar, J. Teoretická Informatika (Theoretical Informatics).
Department of Computers, Czech Technical University, 2004.

[Lattner00] Lattner, C. A. LLVM: An infrastructure for multi-stage
optimization. Master thesis, Graduate College of the University of
Illinois, 2000.

[Lattner04] Lattner, C. A. and Adve, V. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation, Proceedings of
the international symposium on Code generation and optimization:
feedback-directed and runtime optimization, Palo Alto, California,
2004.

[Maj08] Maj, P. Originality Check Problem – Background Research,
Department of Computer Science, Faculty of Electrical Engineering,
Czech Technical University, 2008.

[Minsky67] Minsky, M. Computation: Finite and Infinite Machines (1st

edition), 1967.

- 82 -

[Muller05] Muller, H. Abstract Interpretation, Lecture notes for
COMS30122 Advanced Language Engineering, University of
Bristol, United Kingdom, 2005.

[Prechelt00]Prechelt, L., Malpohl, G., and Philippsen, M. Jplag: Finding
plagiarisms among a set of programs, Tech. rep. Department of
Informatics, University of Karlsruhe, Germany, 2000.

[Schleimer03] Schleimer, S., Wilkerson, D. S., and Aiken, A. Winnowing: Local
algorithms for document fingerprinting. Tech. rep., University
of Illinois, Chicago, UC Berkeley, 2003.

[Schwartzbach03] Schwartzbach, M. I. Lecture Notes on Static Analysis,
BRICS, Department of Computer Science, Univeristy of Aarhus,
Denmark, 2003.

[Sheard02] Sheard, J., Dick, M., et al: Cheating and plagiarism: perceptions
and practices of first year IT students, ACM SIGCSE bulletin,
September 2002.

[Simecek08] Personal communication with Ivan Simecek. 2007-2009.

[Tvrdik00] Tvrdík, P. Paralelní systémy a algoritmy. Department of
Computers,Czech Technical University, 2000.

[Turnitin07] Turnitin.com website, www.turnitin.com

[Wise92] Wise, M. J. Detection of similarities in student programs:
Yap'ing may be preferable to plague'ing. Tech. rep., Department
of Computer Science, University of Sydney, Australia, 1992

[Wise93] Wise, M. J. String similarity via greedy string tiling and
running Karp-Rabin matching. Tech. rep., Department of
Computer Science, University of Sydney, Australia, 1993

[Wise96] Wise, M. J. Yap3: Improved detection of similarities in
computer programs and other texts. Tech. Rep. Department of
Computer Science, University of Sydney, Australia, 1996

[Zhenmin05] Zhenmin, L., Shan, L., Suvda, M., and Yuanyuan, Z. CP-Miner: A
Tool for Finding Copy-Paste and Related Bugs in Operating
System Code, Department of Computer Science, University of
Illinois, Urbana, 2005

- 83 -

- 84 -

- 85 -

Appendix AAppendix A
Attached CDAttached CD

The above illustration represents the directory structure of the attached
CD. Entire source code, reports and other related media are stored in the
folder Crosscheck, while a backup copy is stored in Backup. All paths
from now are relative to the /Crosscheck directory:

Crosscheck's source code is stored in the folder /crosscheck and its
subfolders for each stage - /crosscheck/il for intermediate language
parsers and translators, /crosscheck/reports for reporters,

- 86 -

Illustration 17: CD Contents

/crosscheck/comparison for the comparators and /crosscheck/analysis for
the various analyzers.

Full source code documentation in HTML format generated by the
Doxygen is located in /doxygen/html.

/evaluation contains all data relevant to the Crosscheck's evaluation
presented in this thesis. /evaluation/sources contains the source codes of
the checked submissions and other subfolders contain full analysis
reports of the particular setup.

Finally the /reports folder contains this thesis (in /reports/thesis) and
Crosscheck's presentation (in /reports/presentation) in OpenOffice, Adobe
PDF and postscript formats.

- 87 -

Appendix BAppendix B
Crosscheck's BriefCrosscheck's Brief

TutorialTutorial

Although Crosscheck is mainly intended as a Python library for the web
based e-learning framework, a simple command line interface has been
developed for the purposes of its evaluation.

System Requirements
Because Crosscheck is written entirely in Python programming language,
it's requirements are only a few:

• Python SDK, should be compatible with any 2.x distribution

• Python Imaging Library for graphic outputs

Crosscheck has been tested with the following configuration:

• OpenSuSE 11.1 (x86_64)

• Python 2.6 (gcc 4.3.2)

• Python Imaging Library 1.1.6

Command Line Parameters
Crosscheck command line parameters are very simple. First parameter
must be the prefix for output files. All remaining parameters are locations
of the submissions to be checked. At least two files must be specified for
successful start.

- 88 -

The following command35:

user@machine > crosscheck.py testPrefix s1.c s2.c s3.c

Evaluates the files s1 through s3.c and produces the following files:

• testPrefix_1_to_2.png, testPrefix_1_to_3.png, testPrefix_2_to_3.png
which contains the graphical depiction of the diagonal analysis

• testPrefix_table.html that contains the final comparison table.

Crosscheck also contains numerous additional features such as advanced
logging and configuration system. Documentation to these parts can be
found on the accompanying CD in source code documentation.

File demo.py contains already configured script that will produce the
results of the analysis performed in chapter 8.2 of this document.

35use python crosscheck.py on Microsoft Windows machines.

- 89 -

	Table of Contents
	Illustration Index
	Index of Tables
	Index of Source Examples
	1 Introduction
	1.1 Document Organization
	1.1.1 Typographic conventions

	1.2 Motivation of the Project
	1.2.1 Introduction to Source Code Plagiarism

	2 Background Research
	2.1 Source Code Plagiarism Detection Tools
	2.1.1 First Generation Tools
	2.1.2 Second Generation Tools
	Jplag
	Xplag
	MOSS
	Other tools

	2.2 Code Cloning Detection
	CCFinder

	2.3 Plagiarism in Human Languages
	Turnitin

	2.4 Conclusion

	3 Solution Overview
	3.1 Crosscheck's Stages

	4 Intermediate Language
	4.1 Crosscheck IL Architecture
	4.1.1 Memory model
	Variables

	4.1.2 xIL Elements
	Keywords
	Identifiers
	Immediates
	Operators
	Comments

	4.1.3 Expressions in xIL
	4.1.4 Instructions
	Assert
	Bind
	Call
	Eval
	Exec
	Inparallel
	Jump
	Return
	Sequence

	4.1.5 xIL Metainstructions
	Comment
	Control
	Function
	Language
	Line
	Name
	Source
	Type

	4.2 Expressiveness of xIL and input languages
	4.2.1 Turing Completeness of xIL
	4.2.2 Semantic Preservation in xIL

	4.3 Translation from C++
	4.3.1 Preprocessor
	4.3.2 Namespaces
	4.3.3 Variables
	Unions
	Enumerations
	Strings

	4.3.4 Pointers and References
	Operator New

	4.3.5 Function calls
	4.3.6 Structures and Objects
	4.3.7 Control Structures
	If and If-Else Clauses
	Switch Clause
	For and While Cycles

	4.3.8 Expressions

	5 Abstract Interpretation
	5.1 Basic principles
	5.2 xIL Abstract Interpretation

	6 xIL Code Analysis
	6.1 Code Importance
	6.2 Code Reachability
	6.3 Variable (not constant) Propagation
	6.4 Program Flow Analysis
	6.5 Abstract Interpretation Specifications
	6.5.1 Contexts
	6.5.2 Abstract Domain Lattices

	6.6 Analyses Example
	6.6.1 Simple Example
	6.6.2 Interpretation
	6.6.3 Variable Propagation Analysis
	6.6.4 Reachability Analysis
	6.6.5 Program Flow Output

	7 Comparison
	7.1 Basic Algorithm
	7.1.1 Diagonal Analysis

	7.2 One to One Comparison Strategy

	8 Evaluation and Results
	8.1 Crosscheck's Goals
	8.1.1 Variable and Function Renaming
	8.1.2 Function Placement Changes
	8.1.3 Dummy Functions and Variables
	8.1.4 Extensibility
	8.1.5 Additional Features
	Variable Propagation
	Clever Dummy Code Insertion
	Statement Reordering

	8.2 Coursework analysis
	8.2.1 Task Specification
	8.2.2 Preliminary Analysis
	8.2.3 Crosscheck's Results
	8.2.4 False Positives and Their Explanation
	8.2.5 Possible Improvements

	9 Conclusion
	9.1 Future Developlment
	9.2 Comments

	References
	Appendix A
Attached CD
	Appendix B
Crosscheck's Brief Tutorial
	System Requirements
	Command Line Parameters

