
#! NA propagation in arithmetic operators
#!g OP = (+ # - # * # /)
#!t NA NA
NA @OP NaN
NaN @OP NA

bu
ilt

in
s

co
nt

ro
l

ar
ra

y

lis
t

m
at

rix

ve
ct

or

ar
ith

m
et

ic

lo
gi

ca
l

pr
io

rit
y

op
er

at
or

s

re
la

tio
na

l

ev
al

ua
tio

n

at
tr

ib
ut

es

0

200

400

600

800

1000

1200

1400

testR – R language test driven specification
Petr Maj*, Tomas Kalibera, Jan Vitek

Purdue University, West Lafayette, IN, contact authors: peta.maj82@gmail.com

Motivation

Every computer language that seeks widespread adoption
and large user base requires a formal language specification.
Language references, such as the ECMAScript reference for
Javascript1 are used to this end as these documents are
relatively easy for programmers and virtual machine (VM)
implementers to understand. But while such a reference can
be easily created for a standardized language
like JavaScript, creating such document for an
evolving and community driven language
like R is extremely time consuming and bound
to lag behind the latest language development.

builtins

control

array

list

matrix

vector

arithmetic

logical

priority

operators

relational

evaluation

attributes

0 2 4 6 8 10 12 14 16 18 20

Findings

Since the tests are created to conform to the current R
manual2, we present two different graphs: The first one
shows the absolute number of tests failed (examples of these
tests are displayed on this poster) by GNU-R (Linux64bit,

version 2.15.2 (2012-10-26)) per test
groups.
The second graph is percents of tests
passed by our implementation, FastR
(Linux) and Renjin (0.7.0) showing the
degree of their implementation.

Introducing testR

TestR provides a different approach to the
specification problem. It consists of a
growing number of relatively simple tests that aim to cover
the behavior of the R language with all its features and
corner cases exposed.

Tests are structured according to the language features
and are written in such way they read like a manual,
complete with code examples. Maintaining the suite in
sync with latest language development is as easy as
running the suite and attending to the failures.

TestR has also the potential to help VM developers.
The suite can be used to measure GNU-R
compatibility, or validate new commits in regression
mode. It is simple and extensible enough to either be
integrated to, or make a test suite for nearly any R VM
greatly simplifying the development efforts.

builtins

control

array

list

matrix

vector

arithmetic

logical

priority

operators

relational

evaluation

attributes

0 10 20 30 40 50 60 70 80 90 100

#! testName
#!g OP = (+ # - # * # /)
#!g RESULT(OP) = (8 # 4 # 12 # 3)
#!t @RESULT
a <- 6
b <- 2
a @OP b

Implementation

A single TestR test consists of a header defining the test name and its properties and the test code,
which is R code. A simple preprocessor allows automating repetitive tasks by simple generics.

{test header

While the generics can be used to create powerful super tests, to increase readability, these are not used and the
bulk of the suite consists of simple tests aimed at a single feature. As an example the test below documents the
inconsistent propagation of NAs in arithmetic operations:

}

Each test is given a name that describes its function,
This allows the tests to easily form human readable description

Framework

TestR itself is written in Python and great emphasis has been placed on its modularity. New targets
(R VMs) can be added with a few lines as well as new modules to gather and analyze the results.
TestR can be used in almost any test oriented task from regressions to profiling and benchmarking
R on multiple VMs.
 #! timer module example

#!g SIZE = (10 # 100 # 1000 # 10000 # 100000)
f <- function(a,b) {
 a + b * a / (b-a)
}
c <- 0
for (i in 1:@SIZE) {
 c <- f(c,c+i)
}

test name | gnur_linux | fastr | fastr_graal | renjin
--
timer module example [SIZE=10] | 0.183993 | 1.242291 | 0.682417 | 3.248864
timer module example [SIZE=100] | 0.186549 | 1.253723 | 0.701230 | 3.320019
timer module example [SIZE=1000] | 0.189415 | 1.258490 | 0.711636 | 3.325598
timer module example [SIZE=10000] | 0.209359 | 1.260419 | 0.725398 | 3.617592
timer module example [SIZE=100000] | 0.452572 | 1.272221 | 0.733940 | 3.809238

output of module timer

Conclusions

TestR is an approach to formal language specification using
tests to map the features. It also provides compatibility and
regression suite for the VM developers further helping with
the adoption of the language.

Future work will include increasing the language coverage
and possibly tests of non-core modules.

TestR and FastR can be obtained from:

http://github.com/allr/testr.git

http://github.com/allr/fastr.git

Current State

The test suite consists
of 4K tests covering
Vector, array, matrix
and list data types,
arithmetic, relational
and logic operators,
operator priorities, few
builtins and some
other language
features, such as
attributes. We support
GNU-R, FastR and Renjin Vms for tests and
benchmarking.

number of tests in
 different areas

FastR

Renjin

of failed tests
(GNU-R 32)

% of passed tests for FastR & Renjin

#! partial matching exact default value is NA
#!o TRUE
#!w partial match of 'b' to 'bar'
a <- list(foo=1, bar=2, foobar=3)
a[["b"]] == 2

Example header commands:

g generic argument
t expected result
w expected warning
e expected error
o expected output
t test on/off for different targets

New commands can be added by
creating simple python functions.

When a generic is specified, a new test is
created for each of its values. If multiple
generics are present, all possible combinations
of their values are created.

This is not true for dependent generics. The
dependent generic changes each time its
original generic does. In the example, RESULT
is dependent generic and changes with the OP
generic always providing the correct value for the
result of the operation.

test body

Generic usage, this will be replaced by
the current value of the generic. Generics
can also be used in the header
commands as shown in the #!t check
above.

TestR commands begin with #!. They can
only appear in test headers.

Another interesting failure found is the wrong default value for the exact argument for [[]]
matching. Two tests and their outputs are shown below displaying the difference.

logical(0)

a = list(foo=1, bar=2, foobar=3)
a[["b", exact=NA]] == 2

TRUE
Warning message:
 In a[['b', exact=NA]] : partial match of 'b' to 'bar'

Win32 Win64 Linux32 Linux64

NA NA NA NaN NA NA NA NaN

References

1) ECMAScript reference can be obtained from http://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-262.pdf

2) R manual and reference can be obtained from:
http://cran.r-project.org/doc/manuals/r-
release/R-lang.html

	Slide 1

